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ABSTRACT 
As machine learning algorithms continue to improve, collecting 
training data becomes increasingly valuable. At the same time, 
increased focus on data collection may introduce compounding pri-
vacy concerns. Accessibility projects in particular may put vulnera-
ble populations at risk, as disability status is sensitive, and collecting 
data from small populations limits anonymity. To help address pri-
vacy concerns while maintaining algorithmic performance on ma-
chine learning tasks, we propose privacy-enhancing distortions of 
training datasets. We explore this idea through the lens of sign lan-
guage video collection, which is crucial for advancing sign language 
recognition and translation. We present a web study exploring sign-
ers’ concerns in contributing to video corpora and their attitudes 
about using flters, and a computer vision experiment exploring sign 
language recognition performance with fltered data. Our results 
suggest that privacy concerns may exist in contributing to sign lan-
guage corpora, that flters (especially expressive avatars and blurred 
faces) may impact willingness to participate, and that training on 
more fltered data may boost recognition accuracy in some cases. 

CCS CONCEPTS 
• Human-centered computing → Accessibility technologies; 
User studies; • Security and privacy → Human and societal 
aspects of security and privacy; • Computing methodologies 
→ Machine learning. 
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1 INTRODUCTION 
While powerful machine learning algorithms require large amounts 
of data, many application domains are still data-scarce. In particular, 
collecting sufcient data from small, underserved populations to 
build systems serving those groups is difcult, because the pool 
of potential contributors is greatly reduced. Furthermore, human 
data is typically required to train machine learning systems built to 
serve or assist humans, which introduces privacy concerns. While 
marginalized communities can greatly beneft from systems tailored 
to their needs, they can also be put at higher risk by contributing 
data to build those systems. Small group size makes personal iden-
tifcation easier, and marginalized status makes privacy breaches 
more dangerous. These privacy concerns may further inhibit data 
contributions from an already small pool. While privacy concerns 
are certainly not the only limitation in creating large corpora, and 
may not be the primary limitation in many domains, this work 
focuses on this particular barrier. 

To help address such data scarcity problems by addressing privacy 
concerns, we present Privacy-Enhancing Data Filters (demonstrated 
in Figure 1). These flters obscure the identity of the contributor, for 
example by blurring videos of people signing, or scrambling pixels 
in the frame. As personal identifcation becomes more difcult, 
people’s privacy concerns may be lessened, and people may become 
more willing to contribute to datasets, resulting in larger datasets. 
Filters can be used in a variety of domains, and a variety of flters 
can be designed for any type of data. 

While flters may be useful for lessening privacy concerns, they 
may also be detrimental to models trained on the data. However, 
the increase in data quantity when privacy concerns are assuaged 
could in some cases more than compensate for weakened qual-
ity. In particular, in data-scarce domains, the increase in data may 
lead to increased performance for the resulting trained models. This 
technique can be particularly efective in building public datasets, 
which are powerful – they increase scalability, attract more diverse 
contributors, support broader research eforts, and help democra-
tize data ownership – but compound privacy concerns. It could 
also be particularly useful for systems trained on data from small, 
vulnerable populations, where both data scarcity and privacy are 
problematic. 

The problem of collecting data from small groups is exemplifed 
in sign language data collection. Deaf signers form marginalized 
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Figure 1: We envision that Privacy-Enhancing Data Filters may ease people’s privacy concerns, thereby increasing dataset 
participation and boosting model performance due to larger training set size. Diferent flters may allow for varied levels of 
privacy, participation (dataset size), and model performance. The set of fgures presents an abstract idea that can be applied to 
many domains, so the axes are not tied to specifc metrics. For example, Model Performance could represent Word Error Rate 
for sign language recognition. 

(e.g., digital assistants that respond to people signing; automatic 
translation, dictation, and transcription; and many educational ap-
plications). However, their development requires videos of people 
signing, which may introduce privacy concerns – video reveals 
personal identity, the Deaf community has a history of oppression 
which can make personal identifcation more dangerous, and small 
population size makes identifcation more likely. 

This work explores privacy concern remediation as a tool to en-
able machine learning applications in data-scarce regimes, through 
the lens of sign language data collection, in two main studies. To 
shed light on the end-user experience of using flters, we conduct 
a web study that explores signers’ privacy concerns, allows par-
ticipants to experience some basic flters, and elicits recommenda-
tions for how videos might be modifed in the future to increase 
dataset participation. To explore the potential impact of fltering 
on model performance, we also conduct an ofine experiment on 
sign language recognition with varied amounts of fltered and un-
fltered data. Our results suggest that privacy concerns may exist 
in contributing to sign language datasets, that flters may impact 
participation, and that increased fltered data may boost model 
performance in certain cases. 

The main contributions of this work are: 

• The idea of using Privacy-Enhancing Data Filters to address 
privacy concerns and thereby collect more data, which may 
ultimately improve machine learning performance. This idea 
may be particularly powerful for small, vulnerable popula-
tions where both privacy and data scarcity are problematic. 
We are the frst to propose this idea, which introduces oppor-
tunities for exploring flters in many other domains (e.g., in 
building machine learning solutions for other disability com-
munities, oppressed ethnic minorities, or victims of domestic 
abuse). 

• An initial exploration of this idea, within the context of col-
lecting sign language videos to train recognition and transla-
tion systems. We present two studies, one user study focused 
on signers’ experience of contributing data and using flters, 

and an algorithmic experiment exploring flter impact on 
machine learning performance. We are the frst to explore 
privacy issues related to contributing sign language videos 
to corpora, which introduces opportunities to further ex-
plore the large flter design space, as well as contributors’ 
experiences and machine learning performance. 

2 BACKGROUND AND RELATED WORK 
To frame our exploration of Privacy-Enhancing Data Filters through 
the lens of sign language data, we provide background on Deaf 
culture and sign language and summarize related work on sign lan-
guage recognition, privacy concerns with videos, and techniques for 
enhancing privacy in video and machine learning. To this founda-
tion, our work contributes a demonstration of the potential of flters 
to increase data contributions, and for increased fltered data to 
improve model performance. We also provide an initial exploration 
of signers’ privacy concerns. 

2.1 Deaf Culture and Sign Language 
Sign languages (e.g., American Sign Language i.e. ASL) are minor-
ity languages used primarily by Deaf people who often identify 
as members of a deaf cultural minority.1 Many communication 
barriers result from using non-majority languages and modalities 
(e.g., exclusion from increasingly pervasive voice-controlled agents). 
Even the written form of the majority language can be inaccessible 
because of failures of Deaf Education systems to properly support 
acquisition of a frst language [52, 53, 57] and subsequent low lit-
eracy rates for deaf children [58, 81]. Despite new technologies 
enabling Deaf people from across the world to connect more eas-
ily [87, 100], communities are still small, and Deaf people often 
know one another. Privacy concerns around video sharing may 
be increased, as people are more easily identifed by others in the 
community. 

“Audism” is the marginalization of Deaf people based on audio-
logical status [6, 40, 62]. Like other forms of discrimination, audism 

1We use uppercase “Deaf” to refer to members of a cultural minority group, and 
lowercase “deaf” to refer to audiological (hearing) status. 
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manifests in many diferent ways (e.g., state-mandated sterilization 
[79], doctors or companies rejecting Deaf patients or employees). 
Audism can also be embedded in technologies (e.g., technologies 
that inadvertently exclude Deaf people, such as voice assistants and 
airport PA announcements). Deaf people are often excluded from 
decisions that will profoundly afect them. A famous example is 
the Deaf President Now protest in which students demanded Deaf 
leadership at the only university designed for Deaf people, which 
had historically been run almost exclusively by hearing people 
[30]. The existence of audism can compound privacy concerns with 
sharing videos, by making personal identifcation and disclosure of 
Deafness more risky.

Like spoken words, signs are made up of phonological features, 
originally thought to comprise handshape, location, and movement 
[106]. Current theories provide a more precise, comprehensive set 
of features [18, 96, 116]. Grammatical information can be produced 
non-manually (not with the hands) via eye gaze, eyebrow or mouth 
movement, or head/body posture (see [19, 119] for reviews). Mul-
tiple features occur simultaneously (e.g., the handshape and its lo-
cation), unlike in speech where a single sound typically occurs at a 
time. The language complexity increases the quantity of data needed 
for accurate modeling, in an already data-scarce environment. 

2.2 Sign Language Recognition Algorithms 
Sign language recognition started out with glove-based approaches, 
dating back to 1983 [50]. The patent describes an electronic glove 
that recognized ASL fngerspelling based on a hardwired circuit. 
Since then, a lot of related work was built on “intrusive sign recog-
nition”, where users are required to use or wear intrusive gear [25, 
42, 76, 84]. The frst non-intrusive vision-based recognition sys-
tem, presented in 1988, used skin color thresholding to recog-
nize 14 isolated signs of Japanese sign language [109]. To address 
three-dimensionality, some vision-based approaches use depth cam-
eras [113, 123], multiple cameras [16] or triangulation for 3D recon-
struction [98, 99]. Some rely on colored gloves to facilitate track-
ing [31]. 

Continuous sign language recognition (CSLR) is a necessary 
extension to the works mentioned so far, which focused on isolated 
signs. CSLR deals with naturally produced language where diferent 
dialects, contextual references (e.g., shifting left and right to indicate 
who is talking in a story), and the efect of each sign’s ending on 
the next’s beginning make it a signifcantly more challenging, yet 
also more realistic, problem. The frst work on CSLR used hand-
crafted features in traditional hidden markov models (HMMs) [105] 
to distinguish 40 signs. Many similar works followed, often inspired 
by improvements in speech recognition [44, 117]. 

Advances in deep learning and convolutional neural networks 
(CNNs) for image processing have reshaped the feld. Embedded 
CNNs in HMMs [71, 72], long short term memory (LSTM) cells [70], 
3D-CNNs [22, 60, 114] and a combination of 2D-CNNs with tem-
poral 1D convolutions and optical fow [32] are the most promis-
ing directions. However, deep learning requires large amounts of 
data, and sign language video corpora are typically small. Privacy-
Enhancing Data Filters ofer a way to address such data scarcities 
by boosting people’s willingness to contribute to datasets. We also 
show that with sufcient fltered data, recognition algorithms can 
outperform models trained on unfltered data. 

2.3 Privacy Concerns with Video 
Privacy (and security) have been framed as social and cultural 
phenomena (e.g., [34]), Defned by society, privacy involves legal 
structures, as well as technical and social systems. Understand-
ing what society deems acceptable can be difcult, especially as 
technology changes quickly, bringing with it a change of societal 
privacy expectations [110]. Understanding individuals’ conceptual-
ization of privacy can be difcult as well [61]. In this work, we deal 
with privacy in terms of the possible revelation of personal identity 
through video. 

Privacy concerns with image and video data span many domains: 
video surveillance, which is increasingly used by businesses, police 
departments, and governments (e.g., [36]); robot assistants that may 
be used in sensitive environments like the home (e.g., [20]); health 
monitoring and assisted living systems, especially for the growing 
aging population (e.g., [21, 85]); biometrics, which reveal highly per-
sonal information and are difcult to recover if compromised (e.g., 
[90]); map applications containing images or video, (e.g., Google 
Street View [46]); social media and digital photography sharing 
(e.g., [56]), and cloud computing more generally (e.g., [125]). We 
are not aware of work on privacy concerns for people contributing 
to machine learning datasets, which we provide. 

Privacy-enhancing techniques for visual data typically have a 
detrimental efect on the person viewing the data, for example a 
redacted video or image (e.g., [14, 51, 56, 75]). This past work high-
lights a privacy-utility trade-of, where techniques that enhance 
privacy often reduce the utility of the images or video. We are 
not aware of any work showing that addressing privacy concerns 
can be a tool to collect larger datasets, thereby boosting perfor-
mance of machine learning applications. Our work demonstrates 
this possibility. 

2.4 Privacy-Enhancing Techniques for Video 
Privacy-enhancing techniques for video can be categorized in three 
main groups: methods that 1) prevent capture of sensitive infor-
mation, 2) support computation on sensitive information without 
revealing the sensitive parts, and 3) obfuscate the video. (See [86] 
for a more complete review.) 

Some methods preserve privacy by preventing sensitive data 
from being captured and stored in the frst place. For example, 
systems have been developed to detect cameras and render them 
useless by directing bright light at them [55, 88, 112]. Such systems 
create environments where people can operate with reduced concern 
about undesirable data being collected. 

Obfuscation methods target either select regions or entire frames. 
Targeting human faces or bodies may require face or body detection 
and tracking, often achieved by leveraging skin color [103], gait 
[118], or intentional cues (e.g., privacy-minded people wearing 
distinct clothes [97]). Once detected, people (or other content) are 
obscured by a variety of techniques, the most common listed below. 
Many can also be applied to entire frames (i.e., blur and pixelation), 
as can full-frame techniques (e.g., turning an image into a line-
drawing or distorting colors). 

• blur or pixelation (e.g., [2, 14, 63]) 
• masking or face swap - a person’s face is modifed or replaced 
with another face (e.g., [33, 111, 122]) 
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• silhouette or skeleton - only the person’s silhouette or skele-
ton is tracked (e.g., [85]) 

• avatar - the image of a real person is replaced by a cartoon-
like character (e.g., [92]) 

• invisibility - a person or object is entirely removed, and the 
background is flled in (e.g., [89]) 

Methods that preserve privacy during computation provide pri-
vacy in a variety of ways. Cryptographic methods protect sensitive 
content from unwanted viewers, while allowing access for desired 
ones [12, 23, 36]. These methods typically blur sensitive parts of 
images or video using a cryptographic key, which can be used to 
unblur them. Other methods support sharing obfuscated data, or 
parameters learned by training on the data, without sharing the raw 
data itself [41]. Yet other methods support computation on humans 
without identifying the people, for example to estimate crowd size 
[24]. Many of these methods overlap with those in Section 2.5. 

Algorithmic resilience to video/image distortion has been stud-
ied, but not for privacy-enhancing purposes. For example, the preva-
lence of low-quality cameras, compressed feeds, or out-of-focus 
picture motivates work on the efect of image quality on facial 
recognition or tracking [59, 74]. Protecting people from identity 
theft and biometric spoofng attacks similarly motivates work on 
detecting image tampering or face spoofng attempts [29, 80]. To the 
best of our knowledge, nobody has studied algorithmic resilience 
to distortion, in order to better support privacy enhancements and 
data collection, as we do. 

2.5 Privacy-Enhancing Machine Learning 
Work on preserving privacy in machine learning more generally 
falls into preventing unwanted exposure from three main sources: 
1) training data, 2) the learned model, and 3) the model’s outputs. 
Our work falls into the frst category, preserving privacy of training 
data. However, we show that by doing so, we can actually increase 
dataset size and thereby potentially boost performance as well as 
ease privacy concerns. 

Homomorphic encryption refers to encryption schemes that 
support computation on encrypted data without ever decrypting it 
[47]. A variety of machine learning models can be built on encrypted 
data: simple predictive analysis [10], decision trees, hyperplane 
decision, and Naive Bayes [11] low-degree polynomial classifcation 
[49], and neural networks [48]. Other encryption techniques allow 
target users to decrypt data, for use in machine learning applications 
[77, 124] (e.g., including examples in the previous subsection). 

Diferential privacy techniques have been applied to machine 
learning datasets and algorithms, to provide privacy guarantees. 
Diferential privacy (roughly) is a guarantee that an adversary has 
negligible probability of identifying an individual datapoint based 
on data aggregates [37], and there are limits to such guarantees 
[8]. This framework has been applied to various classes of machine 
learning algorithms including linear and logistic regression [26], 
SVMs [93], PCA [27, 39], boosting [38], and deep learning [1, 101], 
sometimes coupled with network protocols [82]. 

Multi-party computation (MPC) is a domain with direct privacy 
implications. In MPC, multiple entities contribute to a single com-
putation – for example, training a machine learning model on the 
aggregate of separate datasets owned by the entities. Techniques 

exist to aggregate high-dimensional data from multiple sources 
without revealing individual contributions [9], and to learn many 
types of models including decision trees [3, 78], linear regression 
[35] Naive Bayes classifers [115], and k-means clustering [64]. Our 
work does not address MPC in particular, but rather provides a 
means for collecting data that contributors are comfortable sharing. 

3 STUDY 1: END-USER EXPERIENCE OF 
FILTERS 

To explore the end-user experience of flters through the lens of 
sign language data collection, we ran a study with sign language 
users. The study was designed to explore 1) privacy concerns with 
contributing videos to sign language datasets, 2) whether flters 
might impact people’s willingness to contribute, and 3) what video 
modifcation or flters users might want. 

3.1 Procedure 
The study was run as a web study, with IRB approval. We recruited 
American Sign Language (ASL) users to participate through relevant 
email lists and social media. The study took about ten minutes, and 
ran for two weeks. All questions were multiple-choice (some single-
selection, some allowing multiple selections), or free response. All 
questions were available both in English and ASL video. The ASL 
translations were produced by a deaf native signer, with accuracy 
verifed by two native signers (one deaf, one hearing). 

The study consisted of three main parts (after consent): 

(1) Demographics: We asked basic demographic questions span-
ning age, gender, audiological status, and ASL level. 

(2) Filter experience: We allowed participants to experience 
three diferent flters while signing requested content, and 
asked if they would be willing to contribute the resulting 
videos to datasets with diferent owners, to advance sign 
language recognition and translation. We asked about will-
ingness to contribute, as this procedure (consent) aligns with 
IRB ethics standards for any data-collection efort. The pro-
cess went as follows (three times): 

(a) The participant viewed a canvas displaying their webcam 
stream. The feed was either unmodifed, or modifed with 
one of two flters (described below). The participant was 
told to execute the sign HELLO to the camera. 

(b) The participant was asked “Your video was NOT recorded, 
but imagine that it WAS, exactly as you just saw it. Would 
you give permission to use your recording for making 
apps respond to ASL to..” 
– “a Deaf advocacy group at [a company]? The video would 
only be accessible within the company.” 
– “the Deaf Studies group at [a university]? The video 
would only be accessible within the university” 
– “the general public? The video would be available on a 
public website’ 
Participants selected from Yes (defnitely or probably) and 
No (defnitely or probably). We chose specifc recipients, 
because willingness to contribute data to diferent entities 
can difer greatly. 
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(a) Frame cel shading (b) Tiger face 

Figure 2: Stillframes of the two flters that user study partici-
pants experienced, which track the face in real-time. The fl-
ters were implemented starting with open-source code from 
Jeeliz (see https://jeeliz.com/). 

(3) Concerns and requested solutions: We asked several ques-
tions about privacy concerns with contributing sign lan-
guage videos of themselves, which solutions might afect 
their willingness to contribute, and open feedback. 

To help ensure that participant’s relative privacy concerns are 
refected in their responses, we do not use the words “privacy” or 
“security” prior to or while asking about their willingness to con-
tribute videos with diferent flters. (according to privacy guidelines 
[17]). 

3.2 Filters 
For this initial exploration, we sought a small, diverse, mainstream 
set of flters that were technically integratable in our web study. To 
meet these criteria, we chose two flters from Jeeliz’s jeelizFaceFilter 
library [65], an open-source Javascript and WebGL-based library 
for real-time face detection and modifcation. The library provides a 
set of augmented reality experiences through webcams. The chosen 
flters cover the two main methods of obfuscation in the literature 
(blur and masking), and the two main regions of interest (face and 
full frame). We also compared against the baseline of the original 
unmodifed video. 

• Frame cel shading2 - the full frame is replaced with a fat-
tened greyscale version. Jeeliz’s flter applies this transforma-
tion to the face only, and we extended it to cover the entire 
frame. 

• Tiger face3 - the face is detected, and replaced with a tiger 
avatar head, which emits blue bubbles when the mouth opens. 
This flter mimics smartphone Animoji flters, which have 
gained attention within the Deaf community (e.g., [121]). 

The flters were experienced in order of increasing novelty, to 
help ensure that ratings of simple solutions are not artifcially low-
ered by the perceived availability of more complex solutions. 

3.3 Results 
Our study results suggest that privacy concerns may exist in con-
tributing sign language videos to corpora (especially concern of 
2based on https://jeeliz.com/demos/faceFilter/demos/threejs/celFace/ 
3taken from https://jeeliz.com/demos/faceFilter/demos/threejs/tiger/ 

Figure 3: Privacy concerns with contributing sign language 
videos to help develop sign language recognition and trans-
lation, for DHH and hearing participants. Prompt: “What 
are your concerns with sharing videos of yourself signing, 
if any? (Check all that apply.)” 

misuse), and that flters and data owners may impact people’s will-
ingness to contribute videos. They also shed light on the types of 
flters that sign language dataset participants may want (especially 
expressive avatars and face blur). We recognize that these results 
are preliminary, and follow-up studies are needed. 

3.3.1 Participants. We had 61 participants. Two participants left 
the site before completing the fnal questions about privacy con-
cerns, but completed the demographics and flter experience por-
tions. Basic demographics for the group were: gender: 40 male, 
18 female, 3 other; age: 19-75, mean 33.52, SD 12.71; audiological 
status: 23 deaf, 11 hard of hearing, 25 hearing, 2 other; ASL level: 
on a scale of 1 (fuent) to 7 (does not use ASL), range 1-6 (all ASL 
users), mean 3.36, SD 1.63; age when started learning ASL: range 
0-51, mean 13.07, SD 10.58 

3.3.2 Privacy Concerns. To better understand privacy concerns 
that people might have with contributing videos to sign language 
corpora, we asked participants about any concerns they may have 
(see Figure 3). 

The most common concern for both deaf and hard-of-hearing 
(DHH) and hearing participants was video misuse (61% overall, 68% 
DHH, 52% hearing). This concern is particularly relevant to public 
datasets that anyone can access, and correspondingly a lower per-
cent of participants were willing to contribute to these compared to 
private datasets (discussed below). The flters we explored decrease 
the desirability of videos for misuses like creating online memes 
or fake social media profles, and correspondingly increased par-
ticipant willingness to contribute publicly (also discussed below). 
The next-most-common concerns for DHH participants were about 
revealing sensitive information – being recognized by people (39% 
overall, 41% DHH, 35% hearing), showing one’s surroundings (36% 
overall, 35% DHH, 39% hearing), and signing personal content (29% 
overall, 35% DHH, 22% hearing). Filters may similarly help address 

https://jeeliz.com/
https://jeeliz.com/demos/faceFilter/demos/threejs/celFace/
https://jeeliz.com/demos/faceFilter/demos/threejs/tiger/
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Table 1: Ordinal logistic regression predicting willingness 
to contribute. Abbreviations:Est. estimate, SE standard error. 
Signifcance codes: *** < .001, ** < .01, * < .05 

Coefcient Est. SE t p 
flter:frame shading 

flter:tiger face 
entity:company 
entity:university 

0.288 
-0.732 
1.573 
1.537 

0.365 
0.320 
0.317 
0.319 

0.790 
-2.289 
4.957 
4.826 

0.430 
0.022 
<.001 
<.001 

* 
*** 
*** 

Table 2: Percent of participants willing to contribute videos 
of themselves to help develop sign language recognition and 
translation, with diferent recipients (columns) and difer-
ent flters applied (rows). 

Company University Public 
Baseline 90.16% 88.52% 36.07% 

Frame cel shading 86.89% 86.89% 55.74% 
Tiger face 63.93% 63.93% 45.90% 

these concerns by obscuring or disguising the person and/or video 
background. 

Concerns difered substantially between DHH and hearing par-
ticipants. Hearing participants were much more concerned with 
embarrassment about their signing abilities, and not looking pre-
sentable/attractive. The diference in embarrassment may be due to 
diferences in fuency between groups – average fuency rating of 
1.82 DHH vs. 3.36 hearing on a 7-point scale (with lower meaning 
more fuent). Furthermore, sharing sign language videos publicly on 
social media is already fairly common within the Deaf community, 
suggesting that many DHH people may have already overcome 
concerns about contributing videos to the public domain, while 
hearing people who primarily use written text on such platforms 
have not. 

Overall, the vast majority of participants reported some privacy 
concerns. Only 7% of participants (6% DHH, 4% hearing) reported 
having no privacy concerns. Though asking people about concerns 
may result in over-reporting, our results still suggest the existence 
of privacy concerns, which may be a barrier to collecting scalable 
sign language video datasets from this already small community. 

3.3.3 Filter Experience. To shed light on participants’ experience 
of our demoed flters, we analyzed participant responses about will-
ingness to contribute data with the flters to diferent data owners. 
First, we examine which variables (flter and/or entity) may have 
impacted participants’ reported willingness to contribute, through 
a factorial analysis via logistic ordinal regression (see Table 1). Sec-
ond, to gain some intuition about these interactions, we tallied the 
percent of participants willing to contribute data with each flter 
to each entity (see Table 2, with strong and weak responses are 
grouped together for interpretability.). 

Our regression model reveals a signifcant impact of both flter 
and data owner (entity), with the entity being more signifcant. 
Overall, relative to the baseline, the frame shading flter is expected 
to increase willingness to contribute, while the tiger face flter is 
expected to decrease willingness (as seen in the sign of the coef-
cients). Similarly, compared to contributing publicly, contributing 

to the company or university is expected to increase willingness to 
contribute. 

Our tallied table shows that the most participants reported will-
ingness to contribute publicly with flters, and to the private datasets 
without flters. Participant responses suggest that this result for the 
public domain may relate to the flters (which resemble partici-
pants’ top-requested modifcations) addressing their top concerns 
(which primarily pertain to public corpora – i.e., misuse and being 
recognized). Their feedback also suggests that the high willingness 
to contribute privately without flters may relate to counterbal-
ancing concerns about the utility of fltered videos for research 
and development. For example, one person explained, “For training 
purposes... I suggest a mask/distortion feature that leaves a part of 
the face visible.” 

The tallied table also shows that across data owners, a higher 
percent of participants reported willingness to contribute with 
frame cel shading than with tiger face. Participant feedback sug-
gests that this diference may stem from concerns about data quality 
(described above) pertaining more to tiger face than frame cel shad-
ing. In particular, participants expressed concern that the tiger 
face would not sufciently capture facial expressions, which are 
grammatically meaningful, for example commenting, “The problem 
with putting a tiger over a person’s face is that the face is used for 
contextualization of the sign.” 

3.3.4 Requested Filters. To explore more generally how videos 
could be modifed to address people’s concerns and boost contribu-
tions, we asked participants for their input (see Figure 4). 

Most participants (68%) reported that videos of themselves sign-
ing could be modifed in some way to make them more willing to 
contribute. This suggests that adding various flter options to data 
collection mechanisms could increase contributions. Compared to 
deaf and hard-of-hearing participants, hearing participants more 
frequently reported that no possible changes would increase their 
willingness to contribute (43% hearing vs. 21% DHH). Hearing peo-
ple may be less likely to contribute videos no matter the accommo-
dations because they are generally less invested in the end result 
(i.e., sign language recognition and translation). Hearing people 
who sign may also be less comfortable creating and sharing videos 
of themselves signing because they do so less frequently than their 
DHH peers. 

Replacing the contributor with a cartoon character was the most 
popular solution for DHH participants, followed by blurring the 
face, which was the most popular solution for hearing participants. 
Participants’ feedback made it clear that such cartoon characters or 
avatars should capture facial expressions, which are semantically 
meaningful in ASL (and other sign languages). For instance, partici-
pants specifcally requested new avatar flters that “allow for facial 
expression changes in the avatar.” 

3.3.5 General Feedback. In the open feedback, participants ex-
pressed support for the idea of collecting data from sign language 
users to build a digital assistant for signers, but also re-iterated 
privacy concerns. Many expressed support for the end-goal of em-
powering sign language technologies, one stating that they’d had 
“enough of hearing access – where is sign access!” and another, “it’s 
obvious the technology will revolutionize access for the Deaf”. One 
participant also commented on the diversity of signers that this 
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Figure 4: Filters requested by our participants. Question 
prompt: “Are there any other ways your video could be 
changed to make you more willing to share for ASL re-
search? (Check all that apply.)” 

type of data collection would elicit, that they “like the idea of show-
ing a diversity of faces that this study seems to suggest”. While the 
feedback on the project motivation was entirely positive, several 
participants also re-iterated concerns about people misusing their 
videos, especially if released in a public dataset. 

4 STUDY 2: MACHINE LEARNING WITH 
FILTERED DATA 

To explore the impact that flters may have on machine learning 
performance in the context of sign language, we ran a set of ex-
periments using state-of-the-art computer vision for sign language 
recognition. To probe the efects of fltering and potential related 
changes in dataset size, we compared training on fltered and unfl-
tered videos, and varied training set size. 

4.1 Dataset 
For our experiments, we chose the RWTH-PHOENIX-Weather 
2014 [45] dataset, a computer vision benchmark used in many 
papers to compare progress in the feld. The dataset comes parti-
tioned into train, dev, and test sets. Train was used for training, dev 
for parameter tuning, and test was held out for testing (as standard 
in computer vision on such datasets). 

The dataset contains German Sign Language interpretations of 
weather forecasts from public television. We used the signer in-
dependent set [70], where one signer is reserved for the test set. 
It includes nine signers – eight hearing interpreters in the train 
and dev partitions, and one Coda (child of Deaf adults) in the test 
set exclusively. Table 3 provides the dataset statistics. Each signed 
sentence is aligned with a gloss transcript (a written representation 
which retains sign order and grammar), created and reviewed by 
multiple Deaf transcribers. Content is unscripted, which results in 
fast movements, co-articulation (where neighboring signs afect 
execution), and misarticulated signs. Due to recording quality, mo-
tion blur is present in many videos, and resolution is limited to 210 
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Table 3: PHOENIX 2014 Signer Independent SI5 dataset stats. 

Train Dev Test 
Signers 8 1 1 

Duration [hours] 6.80 0.18 0.30 

Frames 612,027 16,460 26,891 

Sentences 4,376 111 180 

Running glosses 49,966 1,167 1,901 

Vocabulary 1,080 239 294 

x 260 px. These factors result in a realistic, challenging recognition 
problem. 

Though this dataset is state-of-the-art, it still has limitations 
which impact our experiments. In particular, it is relatively small 
for this type of task, and does not allow for cross-validation due to 
highly imbalanced signer proportions (see the distribution plot in 
[69]). However, these types of limitations characterise the feld; the 
lack of large, labeled, continuous datasets is a primary barrier to 
progress in sign language recognition and translation [15]. 

4.2 Filters 
For this initial exploration, we sought to conduct a systematic 
comparison with a basic flter type. To meet these criteria, we focus 
exclusively on blur, which is a primary way to enhance video/image 
privacy (see related work), and can be applied to various regions of 
the frame (vs. Animoji flters, which only apply to the face). This 
choice allowed us to explore the two main ways that videos are 
redacted to enhance privacy in related work (targeted and entire-
frame changes) as more of the frame is blurred, unconfounded by 
diferent types of fltering. We did not attempt to use optimal flters, 
but rather to explore reasonable baseline flters in this initial work. 

Specifcally, we compared the unmodifed PHOENIX dataset to 
two fltered variants (see Figure 5) – cel shading of the face, and 
of the full frame. As in the web study, these flters are variants of 
Jeeliz’s [65] Face cel shading flter.4 

• face cel shading - the face of the signer is replaced with a 
fattened greyscale version. The original implementation was 
modifed to ft our ofine use-case by removing face tracking 
(unreliable ofine), and fxing the 3D modeling window in 
the frame over the signer’s face. 

• frame cel shading - the full frame is replaced with a fat-
tened greyscale version. This flter was implemented by re-
moving the face tracking functionality, fxing the 3D model-
ing window in the center of the frame, and stretching it to 
span the full frame. 

4.3 Language Recognition Framework and 
Implementation 

Sign language recognition is a sequence learning task, which means 
Nwe want to predict a sequence of output symbols w . The symbols 1

are typically sign glosses, written words representing signs. Given 
an input video as a sequence of images XT = X1, . . . , XT and1 

4https://jeeliz.com/demos/faceFilter/demos/threejs/celFace/ 

https://jeeliz.com/demos/faceFilter/demos/threejs/celFace/
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(a) baseline (b) face cel shading (c) frame cel shading 

Figure 5: A stillframe of a signer, with the flters we compared: (a) the unchanged baseline, (b) cel shading applied to the face, 
and (c) cel shading applied to the full frame. The flters were implemented starting with open-source code from Jeeliz (see 
https://jeeliz.com/). 

Tthe resulting mean-normalized images x = x1, . . . , xT , automatic 1
continuous sign language recognition tries to fnd an unknown 

N Tsequence of glosses w for which x1 best fts the learned models. 1
We assume the video (image sequence) and gloss transcription share 
the same sign ordering and grammar. This clearly distinguishes sign 
language recognition from translation, which requires re-ordering. 

To solve this problem, we use a state-of-the-art continuous sign 
language recognition algorithm [70, 72]. The framework models 
sign language by embedding a deep convolutional neural network 
(CNN) followed by a recurrent long short term memory (LSTM) in a 
hidden Markov model (HMM). It treats the outputs of the neural net-
work as true Bayesian posteriors and trains the system as a hybrid 
CNN-LSTM-HMM in an end-to-end fashion. The iterative training 
approach that includes frequent re-alignments has been shown 
to be very successful on diferent sign language datasets [67, 70]. 
Our implementation ran on a modifed GoogleNet CNN architec-
ture [108], with a depth of 22 layers. To boost performance, we 
pre-trained on the 1.4M images of the Imagenet dataset [94] and 
performed scrambled re-alignment [68]. 

To compare the unmodifed PHOENIX dataset to our two fltered 
versions with datasets of various sizes, we performed independent 
training runs for each of the three input video conditions, and three 
training set sizes (the full dataset, 50% and 75% of the data). The 
smaller training sets were chosen at random, by randomly select-
ing signed sentences. Entire sentences were chosen for inclusion, 
because they were the unit of alignment with the glossed transcript. 
For consistency in comparing results, the 50% set was chosen to be 
a subset of the 75% training set. We test on videos from the same 
flter condition. A single training instance took about 6 days. 

For the full framework, algorithmic derivations and explanations, 
and implementation details, see Appendix A. 

4.4 Metrics 
We follow the standard metrics of the PHOENIX dataset: word error 
rate (WER). This error measure is suitable for comparing sequences 
of diferent length. It is a common metric used to evaluate automatic 
speech and sign recognition. The metric is computed on aligned ref-
erence and hypothesis sequences (in our case, glossed sentences). It 

divides the minimal edit distance (summing substitutions, deletions 
and insertions) by the total reference token count (in our case, the 
number of signs in the correct gloss transcription), as follows: 

#deletions + #insertions + #substitutions
WER = (1)

#symbols in reference 

4.5 Results 
Our results suggest that while flters may degrade model perfor-
mance for a fxed training set size, models trained on larger fltered 
datasets may outperform those trained on smaller unfltered ones 
in some cases. Figure 6 shows recognition accuracy for the un-
changed baseline and our two flters, with varied training set size. 
(See Appendix A for full results from training and test phases.) 

For reference, state-of-the-art continuous sign language recogni-
tion trained on the employed benchmark dataset, achieves ∼ 40% 
WER [15]. As we rely only on RGB input and do not use temporal 
convolutions, our WER is slightly worse. Nevertheless, low state-
of-the-art performance highlights the difculty of the problem, 
underscored by a lack of sufcient training data. 

4.5.1 Impact of Training Set Size. Overall, the performance of the 
baseline and two flters improved as training dataset size increased, 
indicating that we are operating in a data-scarce domain. The per-
formance improvements do not plateau, signifying that the model 
is not yet saturated with data. As the dataset we used is one of 
the largest continuous sign language corpora, this means that sign 
language recognition and translation is a data-scare environment 
where we expect performance to improve further with more data. 
Privacy-enhancing flters aim to help address this problem by ex-
panding the pool of willing contributors. 

Given sufcient data, both the face cel shading and frame cel 
shading flters outperformed the baseline. WER is lowered by mov-
ing from the 25k baseline dataset to the 37.5k frame cel shading 
dataset (and beyond) or the 50k face cel shading dataset. Similarly, 
WER is lowered by moving from the 37.5k baseline dataset to the 
50k face cel shading dataset. While it is natural to ask how much 
larger the training dataset must be to compensate for fltered data, 

https://jeeliz.com/
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Figure 6: Recognition performance on the PHOENIX SI05 
test dataset, with the flters and training set sizes we com-
pared. Lower WER is better. Models trained on larger fltered 
datasets may outperform the baseline trained on less data in 
some cases (e.g., baseline 25k vs. frame cel shading 37.5k and 
50k). 

it is not possible to answer this question in absolute terms. Perfor-
mance depends on a set of factors – baseline dataset size, baseline 
data quality, the flter design, and the complexity of the task and 
model. 

4.5.2 Impact of Filter. For fxed training set sizes, the baseline out-
performed the two flters, as demonstrated by its lower values in 
Figure 6. This lower error rate is to be expected, as the flters we 
explored degrade video quality by removing linguistically meaning-
ful information. The resulting models are limited in power because 
they do not have access to this information. In contrast, the baseline 
model has access to the full original data, and can leverage more 
information such as color. 

Comparing the two flters, face cel shading generally outper-
formed frame cel shading (as seen in face cel shading’s lower WER 
across training set sizes). For the largest training set size, face 
cel shading performed comparably to the baseline (43.8% baseline, 
44.1% face WER), while frame cel shading has a higher error rate 
(48.0% WER). This diference is likely due to the fact that face 
cel shading preserves details outside of the face, whereas frame 
cel shading does not. When trained on a small amount of data, a 
complex model like ours might learn meaningless patterns in the 
external details while placing less weight on meaningful patterns 
in the low-resolution face, but given enough data it learns stronger 
signals. 

5 DISCUSSION 
While participants in our frst study expressed a higher willing-
ness to contribute fltered data exclusively to public datasets, such 
datasets can be particularly powerful. Public datasets support broad 
scientifc research and public advancement, compared to privately 
owned datasets that beneft individual organizations. As a result, 
people may be motivated to contribute to public datasets for free, 
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reducing monetary constraints that limit dataset size. Voluntary 
contributions also result in more diversity [91], which is essen-
tial for training systems to recognize diverse signers (not currently 
possible). Organizations also monetize datasets, which can be partic-
ularly ofensive to the Deaf community if they are not the primary 
benefciaries. Despite democratization, increasing the control Deaf 
people have over these datasets may be vital, as a fully democratic 
system may leave Deaf people far outnumbered despite having the 
most at stake. 

While this work explored flters that degrade model performance 
due to information loss, it may be possible to design flters that do 
not degrade model performance. For example, a deepfake flter that 
swaps one face for another (e.g., a dataset-wide volunteer) while 
preserving facial expressions would provide privacy without im-
pacting data quality. Such deepfakes can be so convincing that they 
are generally undetectable by humans and computers [73]. Other 
lossless flters such as shufing video pixels would not be expected 
to degrade model performance. To the human eye, the fltered data 
would be unrecognizable, but to a computer the data quality would 
be identical. Furthermore, it may even be possible to design flters 
that increase model accuracy by removing irrelevant content that 
models may latch onto in data-scarce environments (e.g., flters that 
remove the video background or superimpose uniform clothing on 
all contributors). 

There are many use cases for fltering sign language videos, be-
sides encouraging corpora participation. Because sign languages 
are not typically written, signed content is often shared via video. 
The lack of anonymity in video makes many interactions impossi-
ble, e.g. posting content anonymously, collaboratively authoring 
content, sharing ideas in the abstract (vs. through a particular body, 
with social connotations of gender, race, etc.), and submitting work 
for anonymized review. It is also often impossible to edit signed 
content to create a cohesive piece, especially if the signer difers 
across clips. Filters can enable people to share signed content anony-
mously, and the homogeneity of flters may newly enable editing 
and piecing together video clips into a single cohesive result. This is 
all in contrast to written languages, which already support anony-
mous (or near-anonymous) communication, sharing ideas in the 
abstract, and easy editing and collaboration. 

While this work explores privacy-preserving flters to help ad-
dress privacy concerns in dataset participants, it is possible that 
other privacy enhancements may be benefcial. Video misuse was 
the most common privacy concern among both DHH and hearing 
participants in our web study (e.g., using videos to create memes or 
fake profles, distorting or photo-shopping them, or viewing them 
for amusement). While the flters we explored might reduce misuse 
by obscuring people’s identities, they do not target misuse. Other 
possible solutions that target misuse include watermarking dataset 
videos, or creating strict usage terms coupled with methods for 
checking for violations. We also note that ethical data collection 
encompasses more than privacy (e.g. consent), and that privacy 
concerns are not the only limiting factor in collection. To under-
stand how to best support potential contributors, further research 
on concerns and possible solutions is needed. 

We note that sign language recognition and translation software 
is controversial in some Deaf communities. As addressed in this 
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work, collecting training data (videos) may introduce privacy con-
cerns. There may also be pressure to use translation software in 
lieu of more expensive and efective accommodations (e.g., sign lan-
guage interpreters in complex medical situations). These concerns 
may be heightened by the community’s history of audism, but also 
may be reduced if Deaf people take leadership in developing these 
technologies, which have the potential to profoundly afect their 
lives [54, 102]. They may also be addressed by simply improving the 
accuracy of recognition and translation, which requires addressing 
data scarcity problems, as our flters attempt to do. 

6 LIMITATIONS AND FUTURE WORK 
We want to clarify the limitations of this work. First, the application 
of flters to human faces or other parts of videos is not novel (see 
Section 2 for prior examples). However, the application to sign 
language datasets, and the idea that such flters might increase 
dataset participation, are new. Similarly, we do not mean to suggest 
that privacy is the main or only barrier to curating corpora of sign 
language or other types of data. Many other types of barriers may 
exist, for example lack of funding or data-collection infrastructure, 
difculty labeling, and lack of deaf community support for resulting 
applications. Finally, the idea that flters may increase the volume 
of datasets and thus boost machine learning model performance 
requires further work to understand the domains and communities 
in which this may or may not hold. 

Nonetheless, our vision of privacy-enhancing flters enabling ma-
chine learning applications in data-scarce regimes introduces many 
opportunities for future exploration. First, there are many other 
domains besides sign language datasets where this idea could be 
explored. These include: medical data (where flters might obscure 
personally identifying information such as name and date-of-birth); 
audio recorded by digital personal assistants (where flters might 
anonymize the user’s voice or distort other sounds); and video from 
surveillance cameras (where flters may anonymize people’s faces, 
bodies, or sensitive data like credit card numbers). 

As the frst project to explore sign language flters, we introduce 
a large design space for exploration and optimization. While a 
small, basic set of flters was appropriate for an initial exploration, 
a wide range of flters are possible, including methods that lose no 
information (e.g., scrambling pixels), and those that are lossy (e.g., 
artistic styling, various blurs). In particular, avatars that capture 
facial expressions would be interesting to examine, as our web study 
participants requested. New flters also technically challenging to 
create and integrate into applications, often involving real-time 
face or body tracking and complex graphics operations. This line 
of future work also includes developing privacy guarantees, for 
example proving that the original video cannot be recovered with 
certain flters. 

Relatedly, it would be valuable to study the efect of a wider 
spectrum of flters on recognition accuracy. Because the flter’s 
efect is not independent of the model and data complexity, it would 
also be informative to study a variety of recognition models and 
datasets. Because our privacy study revealed a variety of flter 
preferences, it is possible that contributors need a variety of flters 
from which to choose, in order to maximize data contributions. 
The resulting dataset would be highly heterogeneous, requiring 

the development of training methods that efciently leverage both 
fltered and unfltered data, and an understanding of the efect of 
training (and testing) on such mixed datasets. Of course, as the feld 
of sign language recognition and translation evolves, so too should 
the techniques for incorporating fltered data. 

In making initial steps into this space, the two exploratory stud-
ies we present have several limitations. In our frst study, we note 
that people’s responses about willingness to contribute may not 
equate to real-world actions (as in any study). However, running 
a study allowed us to collect qualitative feedback, and to explore 
the space prior to deploying a large data-collection initiative. In 
addition, we can expect relative reported willingness to refect rela-
tive real-world willingness to contribute [17]. Our computer vision 
experiments were also limited due to the small size of existing sign 
language datasets (a problem which also motivated our work). Fu-
ture work includes running larger experiments on both the end-user 
experience and machine learning capabilities, including deploying 
real-world data-collection initiatives. 

7 CONCLUSION 
In this work, we present the idea of Privacy-Enhancing Data Fil-
ters, data modifcations designed to increase contributions towards 
machine learning corpora by addressing participants’ privacy con-
cerns. We do not claim to have designed or evaluated optimal flters, 
but have hopefully demonstrated the possibility that privacy en-
hancements may in some cases encourage dataset participation and 
subsequent model improvements. 

We explored the idea of privacy-enhancing flters through the 
lens of sign language data in two studies. To investigate the end-
user experience of contributing to sign language corpora and using 
privacy-enhancing flters to do so, we ran a web study that asked 
participants about their concerns, allowed them to experience fl-
ters, and elicited flter requests. Our results suggest that privacy 
concerns may be pervasive in the community, and that flters may 
impact willingness to participate. They also shed light on the types 
of flters the community may want (in particular, expressive avatars). 
To explore how fltering may impact machine learning model perfor-
mance, we also ran a set of computer vision experiments comparing 
state-of-the-art sign language recognition accuracy on fltered and 
unfltered videos with varied data quantity. Our results suggest that 
a higher quantity of fltered data may improve recognition accuracy 
in some cases for data-scarce environments. 

To the best of our knowledge, our work is novel in several ways: 
1) we provide a vision that addressing privacy concerns may help 
overcome data scarcity problems in building machine learning 
systems for underserved, vulnerable minority populations; 2) we 
provide the frst exploration of the sign language community’s 
privacy concerns with contributing videos of themselves signing; 
and 3) we provide the frst exploration of the efect of privacy-
enhancing video flters on sign language recognition. Similar work 
might beneft other small, vulnerable populations for whom it is 
difcult to build powerful machine learning solutions due to data 
scarcity (e.g., building tools for other disability communities or 
language models for oppressed ethnic minorities). 
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A CONTINUOUS SIGN LANGUAGE 
RECOGNITION EXPERIMENT DETAILS 

This appendix provides additional details on our sign language 
recognition experiment, including those of interest for computer 
vision readers, and those needed for replication. 

A.1 Hybrid CNN-LSTM-HMM Framework for 
Sign Language Modeling 

We base our experiments on a state-of-the-art continuous sign lan-
guage recognition implementation as published in [68, 70, 72]. The 
framework models sign language by embedding a deep convolu-
tional neural network (CNN) followed by a recurrent long short 
term memory (LSTM) in a hidden Markov model (HMM) while 
treating the outputs of the neural network as true Bayesian poste-
riors and training the system as a hybrid CNN-LSTM-HMM in an 
end-to-end fashion. The iterative training approach that includes 
frequent re-alignments has been shown to be very successful on 
diferent sign language data sets. 
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posteriors to class-conditional likelihoods following Bayes’ rule, 
where the prior probability p(α) can be approximated by the rel-
ative state label frequencies in the frame-state-alignment used to 
train the CNN-LSTM. 

After applying the viterbi approximation, which considers only 
the most likely alignment path and adding several hyper-parameters 
to the implementation we get Equation (2). This is what we opti-
mize to fnd the best output sequence. The hyperparameters allow 
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Table 4: Recognition results in WER [%] (the lower the better) on PHOENIX 2014 SI05 Signerindependent set. Using full frame 
inputs with no preprocessing (Baseline), Face cel shading and Frame cel shading. Best results in boldface. 

Running Glosses Corpus Fraction in [%] Baseline Face cel Frame cel Dev Test 
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A.2 Implementation Details 
In this work, we use the 22 layer deep GoogleNet [108] CNN archi-
tecture, which we initially pre-train on the 1.4M images from the 
Imagenet large-scale visual recognition challenge [94]. GoogLeNet 
makes use of two auxiliary classifers which help to propagate the 
gradient in lower layers of the network. Their losses contribute 
with a weight of 0.3 to the fnal loss. The network uses rectifed 
linear units as non-linearity. To prevent over-ftting dropout [104] 
is applied. We set the threshold to 70% dropout ratio on the auxil-
iary classifers and 40% on the fnal classifer. LSTMs are recurrent 
neural networks. Their intrinsic structure helps to overcome the 
vanishing gradient problem [7]. We attach two bi-directional LSTM 
layers with 1024 units on top of the last pooling layer of GoogLeNet 
and followed by a fnal softmax classifer. We train the recurrent net-
work with truncated back propagation through time [120] and limit 
the temporal context of the LSTMs to 32 frames. We use stochastic 
gradient descent with a momentum µ = 0.9 and an initial learning 
rate λ0 = 0.001 for CNN-LSTM architectures and λ0 = 0.01 for 
CNN networks. We employ a polynomial scheme to decrease the 
learning rate λi for iteration i as the training advances while reach-
ing λi = 0 for the maximum number of iterations being equivalent 
to 4 epochs. � �0.5 

λi = λ0 · 1 − 
i 

(2)
imax 

Our CNN-LSTM implementation is based on [66]. The language 
model (LM) is estimated as 4-gram with modifed Kneser-Ney dis-
counting [28] using the SRILM toolkit by [107]. We estimate it on 
the available training annotations. 

We use RASR [95] for the HMM and search implementation. It is 
a freely available and open-sourced speech recognition framework. 
We employ language model (maximum 4000 hypotheses), histogram 
(maximum 20000 hypotheses) and threshold pruning (maximum 
diference in log-likelihood score of 2000) of the search space for 

better performance and memory consumption. The prior-scaling-
factor β is set to 0.3 and not optimized. The HMM is employed in 
bakis structure [5]. This is a standard left-to-right structure with 
forwards, loops and skips across at most one state. Additionally,
two subsequent states share the same class probabilities. We use 
a topology of 6 states per gloss and a single state to account for 
background/garbage frames. The transition model is pooled across 
all glosses. Only the garbage class is modeled as an ergodic state 
with separate transition penalties to add fexibility, such that it can 
always be inserted between sequences of sign-words. For recog-
nition, we perform a grid search over possible hyper parameters 
for γ and the transition model, which acts in log-domain and is 
composed of forward, loop, skip and exit transition penalties. They 
are optimised on the development set in order to minimise the WER. 
RASR provides an efcient implementation of the word conditioned 
tree search [83], which is used for this work. 

Following [70], we perform iterative training with re-alignments 
starting from a linearly segmentation without any dependency on 
externally generated alignments. We train for 8 re-alignment it-
erations using a the CNN only. Each iteration comprises training 
of 4 epochs. We fnetune from the CNN weights of the previous 
iteration. After 4 re-alignment iterations and diferent to [70], we 
restart the CNN training from the Imagenet pretrained network 
and also resegment the alignment path performing a linear segmen-
tation under gloss start and end constraints given by the previous 
iteration. Finally, we train the full CNN+LSTM network by fne-
tuning from the CNN only weights for additional 5 re-alignment 
iterations. We perform independent training runs for each of three 
input image conditions and additionally for the full data set, 50% 
and 75% of the data. 

A.3 Results Details 
Table 4 contains the exact results of our recognition experiments, 
on both sets: dev (used for parameter tuning) and test (held out 
throughout training). 
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