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ABSTRACT 
Sounds provide informative signals about the world around 
us. In situations where non-auditory cues are inaccessible, it 
can be useful for deaf and hard-of-hearing people to be no­
tified about sounds. Through a survey, we explored which 
sounds are of interest to deaf and hard-of-hearing people, 
and which means of notification are appropriate. Moti­
vated by these findings, we designed a mobile phone app 
that alerts deaf and hard-of-hearing people to sounds they 
care about. The app uses training examples of personally 
relevant sounds recorded by the user to learn a model of 
those sounds. It then screens the incoming audio stream 
from the phone’s microphone for those sounds. When it de­
tects a sound, it alerts the user by vibrating and providing 
a pop-up notification. To evaluate the interface design in­
dependent of sound detection errors, we ran a Wizard-of-Oz 
user study, and found that the app design successfully fa­
cilitated deaf and hard-of-hearing users recording training 
examples. We also explored the viability of a basic machine 
learning algorithm for sound detection. 

CCS Concepts 
•Human-centered computing → Sound-based input 
/ output; Accessibility systems and tools; 
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1. INTRODUCTION 
Knowing which sounds are happening in one’s surround­

ings can be useful. Auditory cues can signify important 
events happening outside of the line of sight. For example, 
a person shouting or gun firing might be heard but not seen. 
Furthermore, society relies exclusively on sound for com­
municating certain information. For example, cars honk to 
alert other drivers; alarms ring to announce important times 
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and emergencies; loud speakers broadcast airport announce­
ments; microwaves beep to tell us our food is cooked; and 
people ring doorbells and knock on doors to announce their 
arrival. These societal conventions make important informa­
tion inaccessible to many deaf and hard-of-hearing people. 

Non-technical sound awareness methods like visual inspec­
tion can be distracting and inconvenient, and technical so­
lutions are often specific to individual sounds. For example, 
alarm clocks that ring loudly, flash bright lights, and vibrate 
are commercially available. Many deaf people also connect 
their doorbell to the home lights, so that the lights flash 
when the doorbell is rung. However, these solutions address 
individual sounds, and it can be expensive and inconvenient 
to purchase a different device for every sound. Even with 
many devices, some sounds cannot be covered because each 
person’s life, and the sounds therein, is unique. 

In this paper, we present the design of a personalizable 
mobile phone app to detect sounds that deaf and hard-of­
hearing users find important. Guided by visual feedback, 
users train the app to identify the sounds they want to know 
about by providing recorded examples of those sounds. The 
user categorizes recordings into groups representing differ­
ent sounds. Because the app learns models of sounds from 
training examples, it is flexible and gives the user control. 
Instead of buying a separate sound detector for each im­
portant sound, the user can download and train a single 
app. Furthermore, because it is a mobile app, the detector 
is portable. It accompanies the user throughout the day, de­
tecting sounds in any location – at work, home, or in transit. 

Our mobile app design provides sound detection for deaf 
and hard-of-hearing people through a ubiquitous device they 
likely already use. Most deaf and hard-of-hearing people we 
surveyed want a mobile sound detector (section 3.4). Be­
cause text messaging is so useful, mobile phone adoption is 
high in the deaf community, where vibration notifications 
are widely used. Deaf users typically choose phones that 
support vibration [28], one of the most useful mobile fea­
tures for deaf users [29], and often carry their phone on the 
body to feel it vibrate [11]. Our app detects sounds with a 
familiar device (i.e., the mobile phone) and uses a popular 
notification medium (i.e., text and vibration). 

We informed our app design through a survey on sounds 
that deaf and hard-of-hearing people want to know about, 
methods they currently use for sound awareness, and their 
design criteria for a sound detector app. We evaluated our 
app design through a Wizard-of-Oz in-lab user study where 
participants set up the app to listen for various sounds, and 
experienced the app detecting those sounds. We also ran 
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an offline proof-of-concept for a GMM (Gaussian Mixture 
Model) based sound detection algorithm. 

The key contributions of this paper include: 

•	 A survey on the design preferences deaf and hard-of­
hearing users have for a mobile sound detector app. 

•	 The design of a mobile sound detector app indepen­
dently trainable by deaf and hard-of-hearing users. 

•	 A user study exploring the usability of our sound de­
tector app design for deaf and hard-of-hearing users. 

2. RELATED WORK 
Sound awareness techniques include non-technical solu­

tions, commercial products, and research ventures. This 
plethora of sound awareness methods highlights the impor­
tance of sound awareness. However, the usability of a train­
able sound detector for deaf and hard-of-hearing users has 
not been explored, which we provide. The acoustic event 
detection required is an active research area spanning signal 
processing and machine learning. 

2.1 Sound Awareness Techniques 
There is a wide array of approaches that deaf and hard­

of-hearing people use for sound awareness. Some deaf and 
hard-of-hearing people are not interested in sounds, but there 
are many approaches adopted by those who are. Many 
sounds are accompanied by visual cues that deaf and hard­
of-hearing people pay attention to or check for. Some deaf 
and hard-of-hearing people use hearing aids or cochlear im­
plants to improve sound sensing. It is possible to amplify 
only particular sound sources in hearing aids or cochlear im­
plants, using wireless streaming with loop systems, FM, or 
infrared. Tactile hearing aids and tactile vocoders that vi­
brate to relay sonic information can also be used to identify 
sounds. Hearing dogs are also trained to alert their owners 
to important sounds. 

There are many products that detect specific sounds, or 
replace them with other types of signals. In many deaf 
homes, the doorbell or phone feeds into the light system, 
so that the lights flash when somebody rings the doorbell 
or calls. Alarm clocks are available that emit loud sounds, 
vibrate, or flash bright lights. Several companies, including 
Harris Communications [12] and Sonic Alert [34], specialize 
in such products for deaf and hard-of-hearing consumers. 
Sound detectors for specific sounds are also marketed to con­
sumers who are not deaf or hard-of-hearing. For example, 
baby monitors and breaking glass detectors can be useful for 
hearing, hard-of-hearing, and deaf consumers alike. 

More comprehensive sound detection systems are emerg­
ing on the market, further signifying that sound detection 
is an important problem. For instance, the Leeo Smart 
Alert [16] plugs into an outlet and listens for smoke and 
carbon monoxide alarms. When it detects either alarm, 
it calls the subscribed phone and plays a recording of the 
sound so that the user can verify that the alarm is going off, 
and respond appropriately. Audio Analytic [3] sells a suite 
of sensors that are installed in the home to detect specific 
sounds like a baby cry, smoke alarm, or window breakage. 
Consumers must work with the company to develop cus­
tom sensors, and the system is designed specifically for the 
home. OtoSense [24] provides software for monitoring in­
dustrial machine sounds, with a recently released app for 

personal use. The app detects two types of smoke alarms 
and lets the user specify additional sounds they want it to 
detect. However, the usability of these designs for deaf and 
hard-of-hearing users has not been studied. 

Several research projects have attempted to provide sound 
awareness for deaf people. Many of these systems focus on 
specific use cases, including detecting sounds in one specific 
deaf-blind person’s home [8], and a chip for detecting sirens 
approaching from behind on the road [20]. Scribe4Me [18] is 
a mobile app that takes a more generalizeable approach to 
sound awareness. Users press a button to request detailed 
information about the last 30 seconds of audio, and the app 
uses a human-in-the-loop system for transcription. Periph­
eral displays depicting sounds for deaf people have also been 
explored (e.g. [13, 19]). Matthews et al. [19] provide a dis­
cussion of the sounds that deaf people care about. Because 
this research was conducted 10 years ago by interviewing 
a small set of people, we used it to inform our design of 
a large-scale web survey on deaf sounds of interest; we ex­
pect a higher quantity of responses, and those responses to 
be more up-to-date. Other applied sound detection research 
includes identifying stress in human voices (e.g., [17]), cough 
detection (e.g., [4, 15]), speech detection (e.g., [10, 33]), and 
voice recognition (e.g., [30, 21]). 

2.2 Acoustic Event Detection 
Acoustic Event Detection (AED) refers to the problem of 

identifying both when sounds occur within an audio stream 
and which sounds they are. Detection is more complex 
than sound classification because the temporal boundaries of 
the sounds must be determined. Creating a personalizeable 
sound detector app for deaf and hard-of-hearing users re­
quires a particularly robust solution to AED. People care 
about a diverse set of sounds, ranging from babies cry­
ing to appliances buzzing, and the app must be able to 
model these different sounds. Training examples might be 
recorded with background noise or conflicting concurrent 
sounds; the phone’s audio stream will include diverse envi­
ronmental noise; and the microphone will be muffled when 
the phone is placed in a pocket. The AED algorithm must 
be robust to all these obstacles. 

Model and feature choice greatly impacts AED accuracy. 
Spectral features like Mel-Frequency Cepstral Coefficients 
(MFCCs) represent the frequencies that make up a sound, 
and are commonly used to represent sounds. Because differ­
ent features provide better signatures for different sounds, 
algorithms have been built to help determine the most ef­
fective features for particular classification tasks (e.g., [26]). 
The models for different sounds are built from these features. 
Researched models include Gaussian Mixture Models (e.g. 
[6, 31]), Support Vector Machines (e.g. [1, 9]), hierarchi­
cal models (e.g., [7, 1]), and random regression forests (e.g. 
[27]). Many of these solutions are tailored to specific sound 
types and environments, but a generalizable sound detection 
app must work well for any sound in any environment. 

Once the sound model is built, different temporal meth­
ods are available for detecting sounds in the audio stream. 
Sliding window methods continuously determine whether a 
sound is present in a small window of recent sound. Hidden 
Markov Models represent the audio stream as a sequence of 
states (e.g. [6, 22, 23]). Each state represents the sound 
occurring at that time. Smoothing methods can help pre­
vent the model from jumping from one sound to another. 



(a) Sounds of interest at home (b) Sounds of interest at work (c) Sounds of interest while mobile 

Figure 1: Sounds of interest to deaf and hard-of-hearing participants (a) at home, (b) at work, and (c) while mobile. 

(a) How often sounds missed at home (b) How often sounds missed at work (c) How often sounds missed while mobile 

Figure 2: Frequency of missed sounds (a) at home, (b) at work, and (c) while mobile. 

Various onset detection methods have been developed and 
used to boost audio event detection accuracy (e.g., [5]). We 
explored the performance of a sliding window GMM sound 
detection algorithm using training data gathered in our user 
study. The state-of-the-art in sound detection is advanc­
ing, and we expect future work applying these algorithms to 
yield more accurate results. 

3. SURVEY TO INFORM APP DESIGN 
We conducted a survey to determine which sounds deaf 

and hard-of-hearing people care about, which methods they 
currently use for sound awareness, and what design criteria 
they would have for an app that detects sounds. The survey 
was approved by the University of Washington IRB and dis­
tributed online. It consisted of a combination of multiple-
choice and free-response questions. Appendix A provides 
the exact questions. Participants were recruited by posting 
on Facebook and emailing relevant lists. We had 87 par­
ticipants (51 female, 36 male). 50 were deaf, and 37 were 
hard-of-hearing. Ages ranged 18-99 (mean 42, std dev 17). 

3.1 Sounds of Interest 
The sounds that participants were interested in know­

ing about are presented in Figure 1. Participants selected 
sounds of interest from a list of options based on a previ­
ous sound awareness survey (i.e. [19]) and discussions with 
deaf colleagues. We also provided a write-in “other” option. 
They selected sounds for three scenarios: a) at home, b) at 
work, and c) while mobile. 

The biggest differences between deaf and hard-of-hearing 
participants are likely explained by deaf participants hav­
ing non-auditory ways of knowing when important sounds 
happen. For example, fewer deaf participants wanted to 
know about wake-up alarms and phones ringing than hard­
of-hearing ones. Alarm clocks are available that ring loudly, 
vibrate, and have strong, flashing lights. Similarly, a phone 
can provide visual or tactile feedback when somebody calls, 
or can be connected to an external device that provides this 
feedback. It is likely that more deaf people know about 
and use these solutions. They are likely less concerned with 
knowing about a phone call or alarm clock going off because 
they already know when those events occur. 

A small minority of participants wrote in additional sounds, 
which suggests our list was comprehensive. The home sounds 
participants added were: vehicles passing by, children hav­
ing bad dreams, smoke and carbon monoxide detectors, ap­



pliances making unusual noises, water running, socializing, 
something dropping on the floor, gunshots, conversations, 
and distinguishing between multiple sources with similar fre­
quency range. The sounds they wrote in for work were: 
dropping items, walking/running behind, moving carts, fire 
drill, printer, conversations, and baby sounds. The varied 
responses for work are likely due to varied work environ­
ments with different sounds. The sounds they added for 
mobile situations were: conversations, and sound location. 

3.2 Missed Sound Frequency 
To better understand where sound detection is needed, we 

asked participants how often they miss sounds of interest at 
home, at work, and while mobile. As shown in Figure 2, the 
majority of participants reported missing sounds in all three 
scenarios. About 50% of both deaf and hard-of-hearing par­
ticipants thought they missed sounds more than once per 
day in each scenario. Most deaf participants either thought 
they never missed sounds, or that they missed sounds very 
frequently (more than once per day), as demonstrated by 
the U-shaped curve of the results in all three scenarios. 
Hard-of-hearing participants were more evenly distributed 
in how often they thought they missed sounds. It is possible 
that more deaf participants reported never missing sounds 
because they developed more reliable systems for knowing 
about the sounds they care about, or because they were less 
aware of missing sounds than hard-of-hearing participants. 

3.3 Techniques for Sound Awareness 
Participants reported using a wide range of techniques and 

devices for sound awareness, highlighting the importance of 
an all-purpose solution. The most widely used technique was 
to check to see if a sound happened (over 80% of both hard­
of-hearing and deaf participants). The fewest participants 
relied on hearing dogs (under 30% of both hard-of-hearing 
and deaf participants). There was little variance in how 
much people relied on hearing dogs; each person either re­
lied on a dog on a daily basis or not at all. Alarm clocks, and 
fire, smoke, or carbon monoxide alarms were the only alert­
ing devices used by the majority of deaf participants. All 
other alert devices were used by a minority of both deaf and 
hard-of-hearing participants. The wide diversity of solutions 
with small user bases suggests that a general solution like 
a trainable sound detector app would be valuable. Instead 
of buying a separate device for many sounds they want to 
know about, users could download a single all-purpose app. 

3.4 Need for a Mobile App 
The vast majority of participants did not currently use 

any mobile apps for sound detection, but were interested in 
using a general sound detector app. Most participants did 
not use any mobile apps for sound detection (80% deaf, 89% 
hard-of-hearing). Those who did use sound detection apps 
reported using dictation software, software that connects to 
hearing aids or cochlear implants, and software that makes 
the phone flash or vibrate when receiving calls, alerts, or 
messages. None of the apps listed provide general sound 
detection (except OtoSense, which one participant used). 
Though most participants did not use mobile sound aware­
ness apps, most wanted an app that would alert them to 
sounds of their choosing (88% deaf, 87% hard-of-hearing). 
The fact that the majority did not use any apps for sound 
awareness, yet wanted a sound detector app, demonstrates 

Figure 3: Desired information for app notifications. Pairs of 
bars represent deaf and hard-of-hearing (HH) participants. 

an unfulfilled user need. 
We explored participants’ design criteria for such an app. 

Figure 3 summarizes desired information about detected 
sounds. Participants most wanted to know about sound 
identity, location, urgency, and confidence in detection. Vol­
ume, length (duration), and pitch are less important. Par­
ticipants also reported a higher tolerance for extra notifica­
tions than for missed notifications. Deaf participants were 
more tolerant of both missed sounds and extra notifications. 
Twenty-six (59%) deaf and ten (38%) hard-of-hearing par­
ticipants would tolerate at least one extra notification per 
day. Twenty (45%) deaf and eight (30%) hard-of-hearing 
participants would tolerate at least one missed sound per 
day. It is likely that deaf participants would tolerate more 
errors because a faulty app would still provide an appre­
ciable benefit, whereas hard-of-hearing participants need a 
more accurate app to provide a comparable benefit. 

Our survey results suggest that autonomy and privacy are 
important to users recording examples of sounds. Hard-of­
hearing participants were generally willing to record more 
training samples. Fourteen (54%) hard-of-hearing partici­
pants were willing to provide at least five training examples 
for a sound, whereas thirteen (30%) deaf participants were 
willing to do the same. Three (7%) deaf participants did not 
want to record any examples, but all hard-of-hearing partic­
ipants were willing to record some. It is possible that rich 
visual feedback during the recording process would increase 
deaf users’ willingness to record examples of sounds they do 
not hear. About half of our participants were willing to ask 
a hearing person to help record sounds, but many (especially 
deaf users) preferred autonomy. All hard-of-hearing partici­
pants were willing to ask for help, compared to 84% of deaf 
participants. In terms of sharing, 73% hard-of-hearing and 
59% of deaf participants were “very willing” to share record­
ings. Reluctance to share is likely due to privacy concerns. 



(a) The main screen. (b) Recording list. (c) Recording screen. (d) Editing screen. (e) Real-time display. 

Figure 4: Screen shots of the app interface. 

4. SOUND DETECTOR DESIGN 
Informed by our survey and refined through iterative de­

sign, we designed a sound detector app to alert deaf and 
hard-of-hearing users to nearby sounds of interest. We im­
plemented the design as an Android application using stan­
dard Android sound processing and data storage methods. 

4.1 Interface Design 
The app interface (Figure 4) allows users to train the app 

to identify sounds by recording examples of those sounds. 
The recording and editing screens provide visual feedback to 
support deaf and hard-of-hearing users independently record­
ing sounds. Users create their own sound types (ex: “door 
knock” or “microwave beep”), and categorize their examples 
under the appropriate types. The app uses machine learning 
to model these sounds, and runs a sound detection algorithm 
on the incoming audio stream from the phone microphone 
to detect when these sound types occur. The user is then 
notified with a vibration and text notification letting them 
know which sound has occurred. The application also pro­
vides a display screen with a waveform of the current audio. 
The display can help users detect sounds that they want 
to record, gain an awareness of background noise, or find 
sound sources by seeing the waveform strengthen as they 
move closer to the source. 

4.1.1 Main Screen 
Because training the app to recognize different sound types 

is central to the app’s functionality, the app’s main menu 
provides a list of all sound types, as shown in Figure 4a. 
Users can check (or uncheck) the green box at the left of a 
sound type to make the app listen for (or ignore) that sound 
type. Sound types can be deleted by clicking DELETE or 
added by clicking the + at the top right. The “uncatego­
rized” type appears at the top of the sound type list, and 
cannot be deleted. Clicking on a sound type brings the user 
to the recording list for that sound type. Through our it­
erative design process, we enlarged the listener switch to 
highlight the importance of turning it on and moved the 
sound display to a separate screen to avoid distraction. 

4.1.2 Recording List 
The recording list, displayed in Figure 4b, lists every record­

ing that was given as an example of a particular sound 

type. To keep the interface clean, the list only displays the 
user-given recording names. Additional details are available 
in the editing screen when the user clicks EDIT. Clicking 
DELETE deletes the corresponding recording. The + but­
ton allows the user to add a new recording. The recording 
interface that then appears automatically classifies the new 
recording under the current sound type. 

4.1.3 Recording Interface 
The recording interface, pictured in Figure 4c, provides a 

waveform visualization for visual feedback during the record­
ing process. The “start” and “stop” buttons allow the user 
to start and stop recording. The recording interface can 
be accessed in two ways: 1) from the quick record button 
on the main menu or display screen, or 2) by navigating to 
a particular sound type and clicking the + button to add 
a sample. If the recording interface is accessed through a 
quick record button, the recording is put into the “uncat­
egorized” type. Otherwise, it is saved under the currently 
selected type. To highlight the importance of categorizing 
the sample appropriately, the app verifies with the user be­
fore saving an “uncategorized” recording. 

4.1.4 Editing Interface 
The editing screen, pictured in Figure 4d, allows users 

to move a recording to a different sound type, change its 
name, or trim the recording. A static waveform visualization 
provides a visual representation of the recording. The visual 
feedback can help users evaluate the content of recordings. 
For example, a pulsing alarm will be visualized as a series 
of peaks. If the recording does not look as it should, the 
user is free to trim it or delete and try again. Recordings 
are trimmed by dragging two sliders along the waveform 
visualization to frame the desired portion of the recording. 
The user can also play back the recording if they want to 
listen to it themselves or ask a hearing friend to check the 
quality of the recording. 

4.1.5 Real-time Display 
The display screen, in Figure 4e, provides a visual repre­

sentation of the current sound level. This feature can be used 
on its own to provide a sense of the current noise level, or 
can be used to help users identify when sounds they want to 
record happen. For example, if they want to record their dog 
barking, the visual display will jump every time their dog 



barks. When a sound of interest occurs, it can be recorded 
directly from this screen using the quick record button. 

4.2 Implementation 
We implemented the sound detector interface as an An­

droid application. Audio data was managed by native An­
droid classes, AudioRecord and AudioTrack. The two classes 
are designed to be used in conjunction with one another 
and function in similar ways. When the user records a 
sound, AudioRecord stores the microphone input as raw 
Pulse Code Modulation (PCM) data in a buffer (<1 s), 
which is transferred to external storage. The AudioTrack 
class inversely reads data from the external file into the 
buffer and plays it from there. Metadata on the record­
ings is stored in the phone using Android’s built-in SQLite 
database. The waveform displays are generated from the 
raw PCM data. Our implementation includes all function­
ality, except for algorithmic sound detection. For our user 
study, we pushed event detection notifications ourselves us­
ing Parse (i.e., [25]), an open source backend API. 

5. INTERFACE USABILITY STUDY 
We ran a formative in-lab study to evaluate the usability 

of the sound detector interface design for deaf and hard-of­
hearing users. During the study, participants set up the app 
to listen for two sounds: door knocks and an alarm clock 
ringing. For each sound, participants recorded and edited 
examples of the sound, saved the sounds in the appropriate 
category, and set the app to listen for the desired sound. 
Participants answered questions and provided open-ended 
feedback about their experience. We obtained IRB approval 
through the University of Washington and recruited by post­
ing on Facebook and emailing relevant lists. 

We had 12 participants (9 female, 3 male). Age ranged 
from 19-60 (average 33). Five identified as deaf (all from 
birth); four as hard-of-hearing (1 from birth, 3 from child­
hood); one as both deaf and hard-of-hearing depending on 
the context (from infancy); one as “hearing impaired” (from 
childhood); and one as mostly hearing with difficulty in noisy 
environments (from young or mid-adulthood). Seven partic­
ipants (58%) reported having their mobile phone with them 
over 80% of the time at home, eight (75%) reported the 
same at work, and ten (83%) reported the same when mo­
bile. This smartphone-equipped majority would be able to 
detect sounds throughout the day using our app. One par­
ticipant did not own a smartphone and expressed frustration 
with smartphones in general. No participants used apps to 
monitor sounds outside of the study. 

5.1 Study Procedures 
The study took place in a lab setting, and an American 

Sign Language interpreter was made available to each par­
ticipant. The study consisted of several steps: 1) watching 
a short demo video, 2) setting the app up to detect door 
knocks, 3) setting the app up to detect an alarm, and 4) re­
ceiving a sound detection notification. Participants used a 
Samsung Android phone with the app installed. After each 
task, participants answered specific questions about their ex­
perience, and provided freeform feedback. Participants were 
encouraged to ask questions and talk about their experience. 

We explained that the app will detect each sound more 
accurately if the user provides more recorded examples and 
trims them, and participants were free to decide how many 

samples to record and which to trim. We provided the fol­
lowing instructions for setting up the app to listen for the 
door knock (and later for the alarm): 

1. Create a sound category for door knocks (or the alarm). 

2. Record examples of door knocks (or the alarm). 

3. Tell the app to detect knocks (or the alarm). 

In closing, we asked participants to configure the app to 
listen for door knocks but not the alarm, and triggered a 
door knock notification. Because we wanted to evaluate 
the usability of the app interface without detection accuracy 
confounding our results, we ran a Wizard-of-Oz experiment. 
Whenever a sound occurred that the app was configured to 
detect, we manually pushed a notification to the phone. 

5.2 Study Results 
We found the app design to be usable for deaf and hard­

of-hearing users recording training examples of sounds. We 
evaluated usability through participants’ ability to train and 
use the app, and their qualitative feedback. All participants 
successfully trained the app by recording, editing, and orga­
nizing samples appropriately, and noticed notifications. Par­
ticipants’ responses provide evidence that the training pro­
cess was generally easy and notifications were appropriate. 
Areas for improvement include clearer instructions about 
sound categorization, larger buttons and checkboxes, and 
personalized notifications. We present participants’ answers 
to questions about their experience in Figure 5, and provide 
a thematic analysis of their free-form feedback. 

5.2.1 Recording and Organizing Recordings 
All participants successfully recorded sound samples, and 

91.7% agreed that “It was easy to record sounds.” These 
participants understood that the user must categorize their 
recordings so that the app can “learn” those sounds, and felt 
that the app clearly supported this task. In the words of P9, 
it was “sleek and minimal which makes it easy to use.” Oth­
ers called it “intuitive,”“simple,” and “easy to use.” Six par­
ticipants specified the app’s customizability as a strength. 
They liked that it could be trained to detect their personal 
sounds, and that it could handle a wide variety of sounds. 
They also enjoyed having control over their recordings. 

The organization of sounds into categories confused some 
participants. Several asked us to clarify what a “sound cate­
gory”was. Some expected the app to distinguish between in­
dividual recordings within a single category. Others thought 
a single example of a sound would be sufficient for the app to 
identify that sound. One person expected to provide more 
recordings for a variable sound (like knocking on different 
doors) than for a highly regular sound (like an electronic 
alarm). This expectation aligns with our vision of the app 
using the recordings in a single category to learn a model of 
that sound type. More training examples lead to more ro­
bust models, especially for highly variable sounds, and thus 
improved accuracy. Explanations satisfied our participants, 
and clearer instructions would likely reduce future confusion. 

5.2.2 Editing Recordings 
Participants generally enjoyed editing their training ex­

amples. The waveform visualization of the recordings was 



Figure 5: Participant responses to questions about their experience using the interface during the study. 

a particular strength, with 91.7% of participants strongly 
agreeing that “The visual display was helpful for editing 
[their] recordings.” The display provides a visual represen­
tation on recording content that allows deaf and hard-of­
hearing users to evaluate them without hearing them. P4 
explained how the display helps understand and trim record­
ings of repetitive sounds like an alarm: “if a deaf person 
could not hear it but wants to record whatever the sound is, 
they could possibly see the repetition and edit it down to a 
certain amount.” Only half of our participants played back 
a sample, yet all participants successfully used the sliders to 
frame the part of their recordings they wished to keep. As 
P9 summarized, “VERY easy to use – just drag and stop.” 
Once familiarized with the editing process, several partici­
pants described viewing and trimming recordings as “fun.” 
Two participants expressed difficulty controlling the sliders. 
Enlarging the slider area would improve ease in the future. 

5.2.3 Configuring the Listener 
All participants successfully configured the app to listen 

for door knocks and ignore the alarm, though several asked 
questions along the way. Configuration involved selecting 
the door knock category, unselecting the alarm category, and 
sliding the listener on. All these actions take place on the 
main menu. All participants agreed that “It was easy to tell 
the app to ignore the alarm,” and all but 8.3% agreed that 
“It was easy to tell the app to listen for the door knock.” Of 
the participants who found configuration easy, one described 
the tasks as “easy peasy” and another elaborated, “it’s easy 
to check on and off the options.” Of the participants who 
had difficulty, four mentioned that the check boxes for se­
lecting and unselecting sound categories were too small, and 
consequently had trouble checking the boxes with their fin­
gers. One participant forgot to turn on the listener once 
they selected the sound categories, and suggested increasing 
the listener button’s size to draw attention to the button. 

5.2.4 Notification System 
While most participants (58%) found the notification de­

sign sufficient to alert them to sounds in daily life, we re­
ceived more feedback on the notification design than for any 
other part of the design. All participants received a door 
knock notification. If they did not test the door knock de­
tection themselves, we knocked on the study door for them. 

The combination of haptic and visual feedback caught 
each participant’s attention. Many were impressed when the 

app notified them, and responded with “Cool!” or “Neat!” 
Those who criticized the text display wanted a larger no­
tification, more information like a timestamp, and longer 
persistence on the screen. One participant was concerned 
about missing notifications if the phone was not physically 
on them, explaining, “it’d be hard to detect... if it only 
vibrates and the phone is not in my hand.” Several par­
ticipants wanted to customize the notifications for different 
sounds. For example, the phone could use a different se­
quence of vibrations to notify the user about each sound 
type. Others wanted alerts sent over another modality or to 
another device. They suggested email, SMS, flashing phone 
lights, sonic alerts, and amplifying the detected sound. 

5.2.5 Use Cases 
Participants envisioned many uses of our app in their lives. 

Picking out sounds while watching TV or in a noisy environ­
ment can be particularly difficult, and several participants 
hoped that the app would do so for them. Others noted that 
the app would be useful when they chose not to use their 
cochlear implants or hearing aids, or when they were using 
their cochlear implants to listen to music or other content 
besides their surroundings. Several participants stay near 
the door and periodically check for guests they are expect­
ing, and using our app to detect door knocks would give 
them more freedom. They were also interested in using the 
app to detect distant sounds. For example, they might want 
to know when the tea pot boils in the kitchen downstairs. 
Several participants mentioned that they would like to take 
the app home and try it out on their personal use cases. 

Participants also suggested design improvements for real-
world usability. Some sounds are common but difficult to 
record (e.g. a fire-alarm or ambulance passing), and having 
these sounds built-in would be convenient. One participant 
was concerned about the presence of background noise or 
competing sounds while recording. While the app provides 
some feedback about background noise by visualizing sound 
level (i.e. volume), adding explicit feedback about conflict­
ing sounds might improve usability. Three participants were 
concerned about the time it takes to set up the app, and 
streamlining the training process or allowing users to share 
training samples would likely lower barriers to use. 

6. SOUND DETECTION EXPLORATION 
To explore the viability of a sound detection app trained 



by deaf and hard-of-hearing users, we implemented a ba­
sic sound detection algorithm and tested it on the training 
examples recorded in our user study. We model sounds as 
Gaussian Mixture Models (GMMs), a common technique in 
sound recognition and detection (e.x. [31]). The model’s 
features are Mel-Frequency Cepstral Coefficients (MFCCs) 
which are commonly used for speech recognition [30]. We 
extract 14 MCFFs for each frame in the training samples. 

We use a set of sliding windows to detect sounds in the 
incoming audio stream. Each sound (or class) has its own 
sliding window, spanning the average length of the class’s 
training examples. The current window is classified as the 
sound whose GMM produces the highest normalized log-
likelihood, the sliding windows are incremented, and the 
process repeats. The windows are incremented by 1/3 the 
size of the smallest window, a gap size found to perform well 
through experimentation. We smooth our classification by 
extending it to cover the expected duration of the sound, 
computed as the average duration of the training examples 
for that sound. We add a “white noise” class, trained on 
examples of office sounds and silence, to compete with the 
other sound types. An app notification is triggered when a 
window is classified as a sound other than “white noise” and 
the previous window does not share the same classification. 

Table 1 shows our sound detection algorithm performance 
on recordings of door knocks and alarms from our user study. 
We ran 3-fold cross-validation on their examples. Test clips 
were formed by randomly inserting user recordings into longer 
streams of white noise collected in the study setting. We 
compared the events detected by our algorithm to the ground 
ground truth of audio events occurring where they were in­
serted in the longer streams. Each time the algorithm de­
tected the inserted sound in the insertion range, we counted 
a true positive; each time the algorithm detected any other 
sound, we counted a false positive. Precision is the fraction 
of notifications sent that detected the right sound, and re­
call is the fraction of sounds that triggered a notification. 
F-score is a weighted average of precision and recall. 

Alarm Knock 
Precision 1.00 0.41 

Uncleaned Recall 0.28 1.00 
F-Score 0.44 0.58 
Precision 0.71 0.77 

Cleaned Recall 0.98 0.41 
F-Score 0.82 0.54 

Table 1: Accuracy of our sound detection algorithm using 
3-fold cross-validation on recordings from our user study. 

Our results demonstrate that background noise in train­
ing examples can impact detection accuracy. One researcher 
took notes with a portable keyboard during the study, and 
loud typing sounds were present in many training examples. 
Because loud typing sonically resembles knocking, keyboard 
sounds during alarm recordings were often mistaken for door 
knocks. We removed typing noises with Audacity’s noise re­
moval tool [2] to produce “Cleaned” training examples. This 
boosted performance, and in particular increased alarm re­
call. Because deaf and hard-of-hearing users might not be 
aware of or recognize the impact of background noise, pro­
viding additional visual feedback on training example qual­
ity would be a powerful addition to the app design. While 

our algorithmic experiments are preliminary, the state-of­
the-art in sound detection is advancing, and we expect that 
robust sound detection will be possible in the future. 

7. CONCLUSION 
In this work, we introduced the design of an app that de­

tects sounds of interest to deaf and hard-of-hearing users. 
It is trainable by users who record examples of the sounds 
they want detected. Visual representations of both real-time 
audio and recorded sounds provide visual feedback on sonic 
content to allow deaf and hard-of-hearing users to indepen­
dently train the app. Our design is informed by a widescale 
survey we ran on the design criteria that deaf and hard-of­
hearing users have for such an app, including which sounds 
they want it to detect. We evaluated our interface design 
through a Wizard-of-Oz user study, and found the inter­
face to be highly usable for deaf and hard-of-hearing users 
recording training examples of sounds. We also provided a 
preliminary exploration of a sound detection algorithm with 
training data from the user study. 

A trainable sound detector app has many potential bene­
fits: improved awareness in social situations where informa­
tion is only communicated auditorily, freedom from visually 
checking if important events have occurred, the ability to 
turn off cochlear implants or hearing aids while still know­
ing about important sounds, and the consolidation of mul­
tiple detection methods into a single app. Allowing users 
to train the app gives users a great amount of control over 
the detector. They can customize it to personal sounds, and 
can expect high detection accuracy because it is trained on 
the exact sounds they want it to identify, recorded with the 
same device that will do the detection, and likely in the same 
environments where the detector will be expected to work. 

There are several limitations to our current work. In par­
ticular, we did not implement a sound detection algorithm in 
the app because we did not achieve a high enough accuracy 
for diverse sounds in noisy environments with the methods 
we tried. Using Wizard-of-Oz sound detection for our user 
study allowed us to evaluate the app design without accu­
racy errors impacting the user experience. The algorithm 
we implemented is preliminary, and we expect to find ap­
propriate algorithms in the future. Sensors are improving as 
industry pushes to gather data about users’ environments, 
and virtual assistants already detect voice commands. The 
existence of virtual assistants like Apple’s Siri (i.e. [32]) 
that run constantly but do not drain the battery suggests 
adequate efficiency is possible as well. 

We plan to improve our interface design and release a 
complete working app. Because our study participants re­
quested various notifications, we plan to support customiza­
tion. For example, one participant could receive email alerts 
while another relays detected sounds to their cochlear im­
plant. Sounds could even trigger complex responses, like 
turning on the porch lights when somebody knocks, by inte­
grating into a smart environment or logic system like IFTTT 
(i.e. [14]). We will also explore active learning to help guide 
users about which categories of sounds need more examples. 
We plan to run a longitudinal study with the complete app 
to fully explore its usability. We hope that our work will 
result in a useful product, and encourage other sound detec­
tion researchers and developers to consider and evaluate the 
usability of their systems for deaf and hard-of-hearing users. 
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APPENDIX 3.	 At work, what sounds do you care about? Check all 
that apply. A. SURVEY QUESTIONS 

Presence of co-workers 
1.	 How often do you miss sounds that you want to know
 

about? For example, a door knock, baby crying, or car
 What your co-workers are doing 
honking. 

Co-workers trying to get your attention 
Never	 Once Once Once More than
 

per per per once per
 
Surrounding conversations 

month week day day
 
At 0 0 0 0 0
 

Knocking on door 
home:
 
At 0 0 0 0 0
 

Emergency alarms work:
 
When 0 0 0 0 0
 

Phone ringing mo­
bile:
 

Faxes 
2.	 At home, what sounds do you care about? Check all 

that apply. Announcements
 

Emergency alarms
 Gun shots
 

Wake-up alarms
 Other:
 

Doorbell
 

Knocking on door
 

Phone ringing
 
4. When mobile, what sounds do you care about? Check 

People shouting all that apply. 

Vehicles driving by 
People laughing 

Honking 
Children fighting 

Sirens 
Children playing 

Airplanes or helicopters 
Baby crying 

Bikes or people coming up behind you 
People knocking things over 
(ex: pots banging, vase breaking, plates breaking) Whether you are blocking another person 

(ex: ”excuse me”, or ”watch out”) 
Intruders 

Dogs barking 
Dog barking 

Sounds in nature 
Appliance alerts (ex: dryer beeping, microwave beeping, (ex: birds chirping, water in a stream, thunder) 
tea pot boiling) 

Announcements
 
Appliances running by accident (ex: airport or train station announcements)
 
(ex: garbage disposal on, faucet on) 

Other: 
Sounds outside of the house 
(ex: people shouting outside the window) 

Emergency alarms 

Other: 



5.	 How often do you use the following for sound aware­
ness? 

Never Once Once Once More than 
per per per once per 
month week day day 

Vibration sens­ 0 0 0 0 0 
ing (ex: through 
the floor) 
Checking to see 0 0 0 0 0 
if the sound 
happened (ex: 
checking to see 
if somebody 
knocked on the 
door) 
Sound alerting 0 0 0 0 0 
devices (ex: 
flashing lights 
for the doorbell) 
Hearing dog 0 0 0 0 0 
Assistive hearing 0 0 0 0 0 
devices 

6.	 What visual or tactile alerting devices do you use, if 
any?
 

Baby monitor
 

Sound monitor (for any type of sound) 

Doorbell or door knock signaler 

Fire, smoke, or carbon monoxide alarms 

Security alarms 

Motion detector 

Telephone signaler 

Alarm clock 

Weather alert 

Hearing dog 

Other: 

7.	 Do you use any apps on your mobile phone to provide 
sound awareness? 
0 Yes 
0 No 

8.	 What mobile apps do you use for sound awareness? 

9.	 Suppose there is a new mobile phone app that can de­
tect sounds. You tell it which wounds to listen for, and 
it sends you alerts when it hears those sounds. For 
example, you can tell it to listen for knocking on the 
door. Then every time it hears a knock on the door, it 
vibrates and a message appears on your phone screen. 
Would you be interested in using this app? 
0 Yes 
0 No 

10.	 (If no:) Why would you not be interested in using such 
an app to detect sounds? 

11.	 (If yes:) What sound would you most want the app to 
detect? 

12.	 When the app detects your sound, how important is it 
that the app tells you the following information? 

Not Of Moder- Very Abso­
impor­ little ately impor­ lutely 
tant at impor­ impor­ tant essen­
all tance tant tial 

What it is 0 0 0 0 0 
Where 0 0 0 0 0 
it comes 
from 
How loud 0 0 0 0 0 
it is 
How long 0 0 0 0 0 
it lasts 
How high 0 0 0 0 0 
or low the 
pitch is 
How ur­ 0 0 0 0 0 
gent it 
is 
How sure 0 0 0 0 
the app is 

13.	 Suppose the app tells you that your sound happened 
when it did not. How often can this happen, so that 
you would still use the app? 

2-3 times Once per Once per Once per Never 
per day day week month 
0 0 0 0 0 

14.	 Suppose the app missed your sound and did not send 
you an alert. How often can this happen, so that you 
would still use the app? 

2-3 times Once per Once per Once per Never 
per day day week month 
0 0 0 0 0 

15.	 In order to recognize a particular sound, the app needs 
samples of that sound. For example, before it can rec­
ognize your microwave beeping, the app needs record­
ings of the microwave beeping. How many samples 
would you be willing to record of your most important 
sound? 

0	 1-2 3-4 5-10 more than 10 
0 0 0 0 0 

16.	 How willing would you be to ask a hearing person for 
help to record sounds? 

Not willing Reluctant, but willing Very willing 
0 0 0 

17.	 How willing would you be to share your recordings with 
other people using the app, so that they do not need to 
record the same sounds? 

Not willing Reluctant, but willing Very willing 
0 0 0 

0 
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