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ABSTRACT
As small displays on devices like smartwatches become in-
creasingly common, many people have difficulty reading the
text on these displays. Vision conditions like presbyopia that
result in blurry near vision make reading small text particu-
larly hard. We design multiple different scripts for displaying
English text, legible at small sizes even when blurry, for small
screens such as smartphones and smartwatches. These “smart-
fonts” redesign visual character presentations to improve the
reading experience. Like cursive, Grade 1 Braille, and ordi-
nary fonts, they preserve orthography and spelling. They have
the potential to enable people to read more text comfortably
on small screens, e.g., without reading glasses. To simulate
presbyopia, we blur images and evaluate their legibility using
paid crowdsourcing. We also evaluate the difficulty of learning
to read smartfonts and observe a learnability/legibility trade-
off. Our most learnable smartfont can be read at roughly half
the speed of Latin after two thousand practice sentences. It is
also legible smaller than half the size of traditional Latin (i.e.
“English”) when blurry.
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INTRODUCTION
Small text is inaccessible to many people with blurry vision.
Nearly everyone’s vision declines with age, resulting in pres-
byopia, the inevitable and irreversible decrease in the eyes’
ability to focus [38, 1, 19]. Requiring people to put on read-
ing glasses every time they look at a personal computing de-
vice prohibits seamless interaction with pervasive computing
interfaces, yet, to our knowledge, this barrier has been ig-
nored in the research literature. Even with corrected vision,
out-of-focus text appears blurry, e.g., text on a smartphone
navigation system when the user focuses on the path ahead.
People with visual impairments, whose vision cannot be fully
corrected with glasses, also have difficulty accessing text on
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Figure 1: The words message and massage clear (left) and
blurred (right) in our smartfonts: (a) Tricolor (b) Logobet (c)
Polkabet (on black). Words are sized to have equal areas.

larger screens. About 285 million people are visually impaired,
246 million of whom have low vision.1 To improve the usabil-
ity of devices with small displays, we argue that it is important
to make the text on these displays more readable.

To address this usability challenge, we propose a novel ap-
proach: smartfonts, new scripts that improve legibility for
various reading conditions. The Latin script that the Romans
inscribed in stone millenia ago is not necessarily optimal for
modern uses and technologies. Our research questions are:
(a) what are effective script designs to improve these ancient
twenty-six letters for display on small screens, and (b) how
difficult would they be to learn? Regardless of the answers,
smartfonts, like the Dvorak keyboard and Esperanto language,
can help us better understand existing writing systems.

Smartfonts aim to improve the reading experience by replacing
traditional letter shapes with more easily distinguished charac-
ters. We focus on English, but similar ideas can be applied to
other languages. Smartfonts, demonstrated in Figure 1, com-
prise distinct renderings of the twenty-six letters so users can
read text, letter for letter, without changes in orthography. In
particular, they do not involve spelling changes or shortenings
such as reading without vowels, though these tactics could be
used in combination with smartfonts. Software can render text
in smartfonts as easily as existing fonts. For instance, we have
modified the firmware of a smartwatch to display everything
in smartfonts (see Figure 2). Importantly, smartfonts could
be used by any individual to display any digital text without
large-scale adoption. Secondary potential benefits include
increased privacy (e.g., for personal messages that may pop
up), improved reading speed, aesthetics, personalization, and
comfort (e.g., reduced fatigue).

1according to the World Health Organization http://www.who.int/
mediacentre/factsheets/fs282/en/
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We designed five smartfonts to improve legibility of small,
blurry text commonly viewed on small screens, and optimized
our designs by iteratively evaluating them with crowd workers.
Our smartfonts employ blocks (not merely strokes) of color
to preserve character distinguishability under blurry reading
conditions. Blurring replaces each pixel with a weighted mix-
ture of surrounding pixels. Blocks of color survive largely
unchanged because nearby pixels already share the same color.
A diverse color palette also helps differentiate between con-
fusable characters. These techniques produced smartfonts
rendered with high fidelity at very small sizes, some perfectly
renderable at only six pixels per letter.

We evaluated smartfont legibility with crowd workers who
were asked to identify small, blurry strings. Because the gen-
eral public does not know how to read smartfonts, evaluating
their legibility is difficult. However, if a reader can make out
an unfamiliar smartfont more clearly than a familiar font, it is
likely that the smartfont is more legible, and the reader’s expe-
rience will only improve with practice. Thus, our evaluation
uses crowdsourcing to compare the identifiability of random
strings in our smartfonts and in Latin characters. Blurry vi-
sion was simulated for the crowd by applying a Gaussian blur
to the text, and size was varied. Our data suggests that it is
possible to design smartfonts that, compared to the traditional
Latin A-Z, are more legible when blurry, or equivalently can
be displayed at smaller sizes with equal clarity. In particular,
the smartfont in Figure 1a is legible smaller than half the size
of Latin text when blurry, without training, by crowd members.
This increased legibility could help people read smartphones
or smartwatches at a glance, even without reading glasses.

We evaluated smartfont learnability through a website that sup-
ports practice and tracks user progress. Practice was provided
through flashcards and fun yes/no practice questions in the
smartfont. We found that our smartfonts, to varying degrees,
can be read fluently with a reasonable amount of practice. We
also found a learnability/legibility trade-off: certain scripts,
especially ones that resemble the Latin alphabet, are easier to
learn but perform worse with blur. Our Tricolor script offers a
reasonable compromise in that it is relatively easy for many
people to learn but also improves legibility.

Our key contributions are: (a) introducing the concept of
smartfonts that radically redesign characters to improve cer-
tain aspects of the reading experience, (b) demonstrating how
one can design and optimize (based on data) smartfonts for
learnability and legibility under specific reading conditions, in
our case, small blurry text, and (c) providing a methodology
to evaluate legibility without teaching people to read fluently.

RELATED WORK
Our smartfont designs and evaluations were informed by
knowledge about the reading process, character design re-
search, and technological solutions to improve reading.

The Reading Process
Psycholinguistics provides a basis for understanding the read-
ing process. When people read, their eyes dart from one fixed
position to the next in jumps called “saccades.” For the major-
ity of the time, an experienced reader’s eyes are stationary. The

Figure 2: A smartwatch displaying an SMS. The sender is
oblivious to the fact that the SMS is read in a smartfont.

region from which a person’s eyes can gather information dur-
ing a fixation is referred to as the “perceptual span.” There are
many competing models of how people convert visual text into
meaning. Word identification lies at the heart of many of these
models. For example, dual-route (i.e., dual-process) models
(e.g., [13]) propose that there are two ways that people recall
word meanings: 1) by sounding out the word’s phonemes and
registering the word by its sound or 2) by converting the word’s
visual representation directly to vocabulary. In competition
with dual-route models are single-route models, which are
modeled after neural networks, and propose that lexicograph-
ical, phonological, and orthographic units exist in the brain;
in between lie hidden layers of computation that refine over
time with experience. Grounded by the importance of word
identification in psycholinguistics, we use string identification
as the basis for our evaluation of smartfont legibility.

Individual letter identification is another important part of
reading in many models. For example, in the phoneme-based
route of dual-route models, sequential letter identification is
thought to play an important role in sounding out words [45].
The number of letters that fit in the perceptual span has been
linked to reading speed [30], providing further evidence of
the importance of individual letter identification. The reading
process is still largely not understood, and both high-level cog-
nitive processes and low-level physical mechanisms involved
are active research areas [43]. The posited importance of letter
identification in psycholinguistic reading models informs our
use of letter identification tasks in designing smartfonts.

Alphabet Character Design
Traditional alphabets have evolved to support both the visual
reading and manual writing processes. Some scripts, such as
the Korean alphabet Hangul, are featural meaning the shapes
of the letters encode phonological features of the sounds they
represent. Mature scripts, say those that have been in use for
over 350 years, have been found to have many fewer mirror-
image letter pairs, such as the lower-case Latin pair b/d, than
younger scripts [51]. Unlike traditional alphabets, our charac-
ter sets are designed for display on screens and thus are freed
from the constraint that they be easily written by hand. Remov-
ing this writing constraint allows us to optimize the reading
experience beyond the experience afforded by traditional al-
phabets. We are not the first to create novel scripts; motivated
by various factors, artists and hobbyists have constructed cre-
ative scripts,2 though we are unaware of any rigorous studies
of their legibility or learnability, which we provide.
2A set of constructed scripts can be found at http://omniglot.com.
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Smartfonts are conceptually similar to Braille, a tactile writ-
ing system for people who are blind or have very low vision.
In Grade 1 Braille, each English letter is represented by a
collection of raised dots in a 2x3 grid. Because Braille com-
pletely redesigns character shapes, it faced fierce opponents
who thought it was too radical, that it would be unhelpful or
detrimental to the blind community, and even attempted to
ban it [21]. Despite initial resistance, Braille was eventually
accepted. It has since greatly benefited many people, and is
linked to higher rates of employment, education, and financial
stability.[41] Like Braille, smartfonts completely redesign the
written form of each English letter to improve legibility. There
is evidence that tactile sensing of letters is very similar to
visual sensing of letters subject to a low-pass spatial filter (i.e.
blurry letters) [35]. Just as Braille’s 2x3 structure is more
legible than embossed characters to the finger [34], we expect
Braille’s 2x3 structure to be more easily discernible to readers
with blurry vision. Consequently, we adopt Braille’s 2x3 struc-
ture in some of our smartfonts. Our hope is that smartfonts,
too, will benefit users by making text more accessible.

Font design has been shown to strongly impact the read-
ing experience. Various letter shape properties, including
stroke width or boldness (e.g. [6]) and serifs (e.g. [3]), have
been shown to impact legibility. Contrast level in both lu-
minance [32] and color [31] can impact both readability and
aesthetic appeal. Certain text/background color combinations
are known to be more readable and pleasing than others [25,
22, 42]. Prior studies on color-grapheme synethesia, where
people have strong associations between letters and colors
(see, e.g., [12]), have shown that reading books with colored
letters suffices to passively learn and create strong perceptual
associations between letters and colors. In her dissertation,
Bessemans explored font design for children who are low-
vision and just learning to read [9]. Custom font designs can
also improve reading for people with dyslexia [40] and pilots
in the cockpit [48]. While typography research informs our
work, we are not addressing the question of traditional legi-
bility. Typography refers to the stylization of existing written
letters resulting in fonts with varied legibility and personality;
we propose redesigning visual letter forms from scratch to cre-
ate entirely new character sets, which we name “smartfonts.”

Evaluating Fonts
Existing techniques for evaluating text readability and legibil-
ity are not readily applicable to smartfonts. These evaluation
methods rely on participants’ ability to read the script being
tested, but reading smartfonts requires training. Prior studies
typically ask participants to read text and then complete a
task based on that text. For example, participants might read
paragraphs of text in different fonts and then answer basic
comprehension tests (e.g. [25]). Reading time and compre-
hension level serve as metrics for readability. An alternate
setup consists of presenting a paragraph of text with individ-
ual word substitutions (e.g. [8, 14, 7]). The number of word
substitutions detected measures readability or legibility. Other
tests involve showing a single word or pseudoword, and ask-
ing the person whether the word they saw was a real word
(e.g. [18]). Accuracy in distinguishing words from non-words
in relation to word display time determines legibility. These

tests would dramatically favor traditional Latin characters due
to the participants’ experience in reading them.

A motivating starting point for our smartfont evaluation tech-
niques is the work on human perception by Pelli et al. [39].
This work compares the “efficiency” of letter identification
across traditional and made-up alphabets. Efficiency was mea-
sured by how well individual letters could be identified in
the presence of random noise, which is different but possibly
related to blur. They also found that a few thousand train-
ing examples sufficed to teach someone to identify unfamiliar
letters fluently. Pelli’s methods for evaluating character dis-
tinguishability and learnability inform our smartfont legibility
and learability test designs.

Crowdsourcing has been shown to yield reliable results in per-
ception studies, and has been used by many researchers. For
instance, Demiralp et al. explored the use of crowdsourcing
to evaluate the perceptual similarity of different shapes and
colors, and developed perceptual kernels to quantify crowd-
learned similarity [17]. They found crowdsourcing to be an
inexpensive, rapid, and efficient means to gather data on hu-
man perception. Heer and Bostock demonstrated the viability
of Mechanical Turk, a popular crowdsourcing platform, for
evaluating visualization graphics by replicating previous re-
sults and running new studies that produced new insights [26].
In our work, we use Mechanical Turk to reach a wide pool of
potential smartfont users and evaluate smartfonts.

Technological Approaches to Improve Reading
HCI techniques proposed to improve digital reading could
be combined naturally with smartfonts, as they build off of
existing letter forms. Such techniques include RSVP3 [27],
leading [24], Froggy [52], ClearType [20], and visual syntactic
text formatting [49]. Interactive teaching techniques could also
help people learn smartfonts, such as software that gradually
teaches a language by introducing new words over time [46].

A number of factors affect the adoption of new technologies
like smartfonts. Even with models like the Technology Accep-
tance Model [16], predicting adoption is difficult. A notable
source of contention is the debate about the Dvorak keyboard’s
adoption “failure”: Economists cited early studies claiming
that it is 20-40% faster than the QWERTY keyboard, and thus
the low adoption rate of the significantly “superior” Dvorak
keyboard proves how difficult it is to change behaviors [15],
while later studies found Dvorak to be only 2% faster [33].
Other input techniques garnered higher adoption on PDAs and
smartphones [23, 53], highly influenced by user preference.
Similarly, early smartfont adopters would likely be those who
benefit most and find them easiest (or most enjoyable) to learn.

OUR SMARTFONTS
We designed three initial smartfonts to be easily legible at
small sizes and out of focus. We leveraged three main tech-
niques: 1) using blocky shapes known to be resilient to blur, 2)
using color to distinguish between characters, and 3) radically
reducing the space between adjacent characters. Visibraille

3RSVP has recently received attention due to http://spritzinc.com
and its inclusion on the Microsoft Band smartwatch.
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(a) Visibraille alphabet

(b) Polkabet alphabet

(c) Logobet alphabet

(d) Visibraille 2 alphabet

(e) Tricolor alphabet

Figure 3: Our smartfonts designed to improve legibility of
small, blurry text.

and Polkabet are designed to support blurry character distin-
guishability, while Logobet is designed to minimize text area.

Visibraille
Our smartfont Visibraille is modeled after Braille. Braille’s
2x3 structure of dots has proven to be more tangible than em-
bossed traditional letter forms [34]. Because fingers have low
spatial resolution, what is “seen” with the fingers resembles
what is seen in a blurry image [35]. Consequently, we ex-
pect Braille’s 2x3 structure to be more easily discernible than
traditional characters for blurry vision. This expectation is
supported by empirical evidence showing that 2x3 characters
are more visually distinguishable than traditional characters;
out of a range of established and made-up alphabets, 2x3 char-
acters have been shown to be most visually recognizable [39].

Visibraille, shown in Figure 3a, maps 26 2x3 blocks onto the
26 letters of the English alphabet. We selected the 3×2 blocks
to be similar in shape to the English characters they represent.
Because of its simple design and similarity to Latin characters,
we expect this smartfont to be both legible and learnable.

Polkabet
Polkabet adds color to the design space to increase distin-
guishability. It is designed for a black background, which is
common to personal devices like the smartwatch. Contrast
in color and luminance help the eyes distinguish elements
visually. They impact text readability (e.g. [32, 31]), and
help data visualizations distinguish between data (e.g. [50]).
To support distinguishability, we chose five colors, shown in

Figure 3b, spaced out in hue and to have a strong luminance
contrast with the black background. We then adjusted them
based on participant feedback, since colors vary greatly across
displays. Similarly, colors could be personalized and tailored
for various types of color blindness. Rather than adding an
additional color, we included two rainbows to minimize the
number and confusabililty of colors.

Polkabet’s characters are solid squares and rectangles. Peri-
metric complexity (the ratio of character perimeter to “ink”
area) has been found to correlate strongly with people’s effi-
ciency at identifying characters, with less complex characters
identified more efficiently [39]. Because solid squares and
rectangles have low perimetric complexity, we expect these
shapes to be highly discernible. Characters with low perimet-
ric complexity are also resilient to blur. When an image is
blurry or out of focus, each pixel appears to be a mixture of
nearby pixels. Solid blocks are highly robust to this type of
blurring because many nearby pixels share the same color.

Like Braille, Polkabet uses dot position to distinguish certain
letters. While many letters are similar and hence possibly
confusable, the similarities are vertical, motivated by the pref-
erence for vertically reflected letter pairs such as p-b over
horizontally reflected letter pairs such as b-d across natural
language [51].

Figure 4: Mnemonics for Polkabet’s small square characters.

To facilitate learnability, we used mnemonics to match letters
to colors, shown in Figure 4. If a character uses a small square
of color, the reader can think of the associated item from
Figure 4. The first letter of that item is the letter that the
character represents. Squares of color at the top are associated
with foods, middle squares with animals, and bottom squares
with miscellaneous items. For example, suppose a reader
forgets what a red square at the top of the line means. He/she
would think, “This character uses a red square at the top, so
think of a red food... Tomato! ‘Tomato’ starts with t, so that’s
a t!” Tall blocks of color represent the first letter of that color.4

Logobet
Logobet aims to minimize text area by reducing the spacing
between letters, a typographic process called “kerning.” In a
proportional font, the space allotted to characters depends on
their size. For example, an m is allotted more horizontal space
than an l. However, reducing the spacing between pairs of
4X, which stands for “Rainbow”, and U, which stands for “Upside-
down Rainbow”, are exceptions.



(a) The alphabet in Logobet characters without kerning

(b) The alphabet in Logobet with kerning

Figure 5: Example of aggressive kerning with the alphabet.

characters can be desirable. For example, a capital T allows a
short subsequent letter, such as an o, to shift left under the T’s
umbrella, as in the word Tomato. Because Logobet employs
extreme kerning to condense strings, it visually resembles a
character-based logography, such as Chinese.

Logobet’s characters were chosen with vertical positioning,
like Polkabet, to avoid left-right mirror pairs. Horizontal,
vertical, and diagonal lines and circles and semi-circles are
known to be easily distinguished [47]. Logobet’s characters,
illustrated in Figure 3c, consist of these shapes except that
boxes were used in place of circles to avoid pixelation effects.
Logobet maximizes kerning by allowing characters to shift
entirely underneath preceding characters. Each character occu-
pies a fraction of the row’s height, and subsequent letters that
are strictly lower slide underneath. Letters are ordered first
top-to-bottom, then left-to-right, to ensure that every printed
Logobet string corresponds to a unique letter sequence. For
example, Figure 5 shows Logobet’s kerning on the alphabet.

OPTIMIZATIONS
We explored optimizing color and shape over 2x3 characters.
We present two optimized fonts: Visibraille 2, whose 2x3
blocks are chosen to be minimally confusable; and Tricolor,
which adds color to Visibraille’s Latin-esque 2x3 characters.
We generated a crowdsourced confusion matrix of 2x3 shapes
which determined Visibraille 2’s shapes and Tricolor’s colors.

2x3 Character Confusability Study
We determined the confusability of 2x3 characters5 using paid
crowdsourcing on Amazon Mechanical Turk.6 Our study is
modeled after a rich history of studies on character recognition
and legibility, where a predominant technique is to collect
confusion information on characters presented in conditions
that obscure distinguishability (e.g., [2, 4, 10, 44, 28, 35]),
and brings this tradition to the crowd. Our experimental setup
mimicked a Snellen eye chart test, a standard eye exam test.

Workers were shown rows of characters at decreasing sizes,
specified in Figure 6. Each row was shown separately, and
contained 1-9 characters. Participants transcribed the char-
acter(s) using a virtual keyboard of 7 characters. The target
characters were chosen randomly with replacement from the
keyboard’s characters, which were also chosen randomly.

In total, we collected 4022 evaluations from 548 people. Each
character was shown 379-500 times (mean 442.1). Each pair
5Of the 26 = 64 possible 2x3 characters, we considered a subset of
42 characters to reduce labor. In particular, two configurations were
considered to have the same shape and likely to be confused if the
block patterns were translations of one another.
6http://www.mturk.com

Figure 6: Our confusion matrix was generated by testing a
series of rows of random characters, like a Snellen chart.

of characters appeared together on the virtual keyboard at least
33 times (mean 64.7). Since experiments were conducted
remotely through web browsers, we did not control for display
conditions or viewing factors such as retinal angle. However,
this enables us to assess the confusability of our shapes “in the
wild,” across a wide variety of display types and people. To
minimize pixelation artifacts, participants were instructed to
keep their web browsers at the default 100% zoom.

Figure 7: 2x3 character confusion matrix.

Our confusion matrix C, shown in Figure 7, consists of the
confusability score ci j between each pair of shapes i and j.
Here, ci j denotes the fraction of times shape j was transcribed
when i was the target, out of the total times j was available as
a transcription choice for i. The confusability of a shape with

http://www.mturk.com


itself cii is similarly defined to be the fraction of times that i
was transcribed when i was shown.

Visibraille 2
Finding the 26 most empirically distinct (least “confusable”)
characters for an optimized smartfont was modeled as choos-
ing the set S of size 26 so as to minimize ∑i, j∈S,i, j ci j. This
problem is NP-hard, but we used a branch-and-bound search
to quickly find the exact optimum among the

(42
26

)
≈ 1011

possible solutions. The set found by our branch-and-bound
algorithm is visualized in Figure 8. The 26 selected letters,
shown in black, minimize the sum of edge weights between
nodes in the selected letters. We mapped these 26 shapes to
the Latin A-Z to create Visibraille 2, as illustrated in Figure 3d.
The mapping was chosen to ease learning by assigned shapes
to Latin characters they resembled (upper- or lower-case7).

Figure 8: The 26 selected shapes (black) of the 42 consid-
ered. Edges denote highly confusable shapes. Although the
confusion matrix is high-dimensional (as measured by eigen-
values), D3’s force-directed graph layout [11] displays many
confusable pairs near one another.

Tricolor
We also used the confusion matrix to identify commonly con-
fused characters from our initial smartfont Visibraille. We
color each pair of confused characters differently to introduce
a new smartfont Tricolor. Because its characters closely resem-
ble the Latin A-Z, we hypothesized that it would be easy to
learn and remember. Because it uses both shape and color to
distinguish between characters, we hypothesized that it would
also be highly legible at small sizes and blurry.

To assign characters optimally to three distinct colors, we solve
the following problem: partition the set of letters into three dis-
joint sets S = S1∪S2∪S3 so as to minimize ∑

3
k=1 ∑i, j∈Sk,i, j ci j.

This NP-hard search over ≈ 4× 1011 partitions succumbed
easily to exact optimization again using branch-and-bound
search. The selection, visualized in Figure 9, minimizes intra-
color edge weights (between characters of the same color), or
equivalently maximizes inter-color edge weights.

7For simplicity, we focus on only twenty-six letters, while the Latin
font has 52 letters if one includes both cases. An additional twenty-
six letters could be added similarly, or like Braille, a single symbol
could be incorporated to indicate case.

The Tricolor alphabet is shown in Figure 3e. It adopts the
easily-learned Latin-esque shapes of Visibraille, and assigns
3 colors to help distinguish easily confused letters. Because
pairs of “mirror images” were commonly confused in our
study (in accordance with prior work [51]), our optimization
assigned different colors to each such pair. For example, “a”
and “n” are mirror images of one another and are colored black
and blue respectively. Other highly confusable pairs, such as
“l” and “n,” are also colored differently.

Figure 9: A D3 [11] force-directed layout of Tricolor attempts
to locate similar pairs of letters near one another and also
illustrates the colors chosen by our optimization algorithm.

LEGIBILITY EVALUATION
Evaluating the legibility of new smartfonts is difficult when
nobody knows how to read them. Evaluating legibility com-
pared to Latin is further complicated by the test population’s
lengthy experience reading and identifying Latin characters.
Even with training, we cannot reasonably expect our test popu-
lation to accumulate a comparable amount of experience with
a new smartfont over the course of a study. Our evaluation
method does not require training people to read smartfonts.

Experimental Setup
Our legibility experiments consist of showing participants a
target string and asking them to select the matching string
from a list, as shown in Figure 10. The targets were random
strings of length five, roughly the average word length for
English. We chose strings as visual stimuli based on the
theory that words are preferable to both individual letters and
sentences for evaluating visual acuity [5]. Individual letters
are inappropriate since they cannot blend with neighboring
characters as longer strings do, and longer text is not ideal
because individual factors unrelated to visual clarity contribute
to reading comprehension (like inference from surrounding
words). Each question came with four possible answer choices.
One of the answer choices was the same five-letter string as
the target. The other three matched four out of five target
characters, with one random replacement.

We used a within-subject design, with each participant answer-
ing questions for a single smartfont and for Latin. Latin text



Select the match.

Figure 10: Sample legibility task with smartfont Visibraille.

was presented in Helvetica. The target image was presented
at decreasing sizes, with three questions at each size for both
fonts. Blur was manipulated with a Gaussian filter, which re-
places each pixel with a weighted average of nearby pixels. A
large radius creates highly distorted images and mimics severe
presbyopia, while a small radius leaves images largely intact.
The blur radius was fixed throughout each experiment. We
first scaled text then applied blur. This simulates the experi-
ence of reading small, blurry text (e.g., a presbyope reading
text on a smartphone), where the stimulus is fixed and clear
and the eyes essentially apply a blurry filter.

Simulating blurry vision allowed us to crowdsource our evalu-
ation through Amazon Mechanical Turk.8 Instead of screening
for specific blurry vision conditions, we blurred text and asked
the crowd to “read” it. Low visual acuity and other problems
early in visual processing are in some sense transformations
on the stimulus. Whether blurring occurs on the screen or
in the visual system, the perceptual effect is similar. Conse-
quently, there is a precedent for blurring images to simulate
blurry vision in reading studies (e.g., [28]).

We ran two experiments. Our first compares all five smartfonts
at a fixed blur of 3.5. We had 154 participants (69 female, 81
male, 4 other). Ages ranged 18-72 (mean 35). 32 evaluated
Polkabet; 30 evaluated Visibraille 2; 31 evaluated Visibraille;
33 evaluated Tricolor; and 28 evaluated Logobet. 69 were
wearing glasses during the study, and 85 were not. Our sec-
ond experiment compares Tricolor at three different blurs. It
involved 104 participants (37 female, 64 male, 3 other). Ages
ranged 20-69 (mean 36). Of these, 36 saw a blur of 2.5; 33 saw
a blur of 3.5; and 35 saw a blur of 4.5. 41 participants wore
glasses during the study, and 63 did not. Participants received
$1.50. Workers quit and were paid when the size became too
small, so few answered all questions. Workers had at least a
HIT Approval Rate of 97% and 1000 approved HITs.

Legibility Results
It is not obvious how to compare the legibility of smartfonts,
especially with experiments performed “in the wild” where
users have varied screens and software. To address this, we
compare, for each participant, the smallest size they can read
Latin text to the smallest size they can read their smartfont.
Since each participant viewed Latin and a single smartfont, this

8http://www.mturk.com

enabled us to compare, on an individual-by-individual basis,
the smartfont and Latin letters under the same conditions.

Determining a metric for font size applicable to diverse scripts
is challenging. Vision scientists typically use visual angle
between the bottom of the text, the viewer’s eye, and the top
of the text, while typographers prefer the physical print size of
characters [29]. Variance in character height and width within
fonts further complicates defining size. To fairly compare
different scripts, we use text area as our metric. Text area in-
cludes the white space between and around characters required
to render the text that cannot be occupied by surrounding text.

We define a Minimal Reading Area (MRA) for font f , MRA f ,
which is specific to the participant (and blur). Note that in our
experiment we asked three questions for each font at each size.
As we decrease size, we say the participant fails to read at the
first size where they make a majority of errors (2 out of 3). We
define the MRA to be the just-larger size used before failure.
Although participants were asked to attempt reading at smaller
sizes, this further data was not used in the analysis because
it typically reflected random guessing. We also exclude data
from participants who failed to read at the largest size, since
they likely misunderstood the instructions or were guessing.
It is convenient to consider the log-MRA, shown in Figure 11,
since a constant difference in log-MRA reflects a constant
factor change in legible size.

Figure 11: The (smoothed) empirical distribution function of
log-MRA (at blur of radius 3.5 pixels) for the fonts. y is the
fraction of participants whose log-MRA was larger than x.

To get some intuition for the meaning of text area, a Facebook
post on a Chrome desktop9 web browser today appears in
a font whose full ascender-to-descender height is 13 pixels,
which corresponds to a log area 8.75 (see the vertical line
in Figure 11) in our experiments. With the interpolation in
Figure 11, this suggests that only 8% of participants could
read this size text, at our blur, in the Latin font while over
60% of the participants could read Polkabet and Tricolor fonts.

9Most of our participants were using desktop, not mobile, browsers.
See http://facebook.com and http://google.com/chrome.
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Our definition of MRA focuses on font sizes large enough that
users are most often correct, based on reading research which
shows that users prefer and read faster at font sizes for which
they can readily discern letters (e.g [14]).

To quantify each smartfont’s performance by a single number
bounded by a confidence interval, we define the log-score
(LS), for each experiment to be the log of the ratio of the MRA
for Latin to the MRA for each smartfont f , or equivalently,

LSLatin, f = lg
MRALatin

MRA f
= lg(MRALatin)− lg(MRA f ),

where lg denotes base 2 logarithm. A log-score of 0 means
the participant read the smartfont at the same size as Latin;
1 means they read the smartfont at half the size; 2 means
they read the smartfont 4 times smaller; etc. Note that our
experiment is inherently one-sided: upper bounds on log-score
do not bound the legibility of the smartfont after training.

A histogram of the log-scores for Tricolor is displayed in
Figure 12. 26 of the 33 participants (79%) had positive log-
scores, meaning that they “read” the smartfont at a smaller
size than Latin, and 18 of the 33 (55%) had log-scores greater
than 1, meaning they “read” the smartfont at least half as small
as Latin. The sample mean log-score was 1.28. The wide
variance in this histogram means that some users might benefit
significantly more than others from adoption.

Figure 12: Histogram of log-scores for Tricolor with blur
radius 3.5 pixels.

Table 1 displays confidence interval bounds for our smartfonts.
For simultaneous 95% post-hoc confidence intervals for five
smartfonts, we choose what would normally be 99% confi-
dence intervals bounding each (the union bound on the 1%
failure probability of each estimate then implies 95% confi-
dence). Since our test is inherently one-sided, as mentioned,
we use simultaneous one-sided confidence intervals, based on
mean and standard deviation. Only Tricolor and Polkabet’s
confidence intervals are entirely positive, suggesting particu-
larly strong legibility for these smartfonts.

Smartfont CI lower-bound Mean log-score
Polkabet 0.78 1.30
Tricolor 0.62 1.28
Visibraille -0.23 0.14
Visibraille 2 -0.32 0.14
Logobet -0.56 -1.03

Table 1: Mean and 95% simultaneous (one-sided) confidence
interval lower-bounds.

To see how performance would vary as we change the blur
parameter, we compared Tricolor versus Latin at three differ-
ent blur radii. The results at radii 2.5 pixels, 3.5 pixels, and
4.5 pixels, were all greater than 0 with statistical significance,
though the differences were not statistically significant. The
mean log-scores of 1.17, 1.28, and 1.41, respectively, suggest
a possible increasing trend.

LEARNABILITY EVALUATION
In order for our smartfonts to be usable, they must be learnable.
To evaluate learnability, we designed an online learning system
and tracked partcipants’ progess. The learning site assigned
each visitor a single smartfont. It provided a tutorial about
the smartfont, yes/no practice questions in the smartfont, and
flashcards for drilling the meaning of individual characters.

Learning Site Design
The site welcomed visitors with a brief smartfont tutorial. The
tutorial presented 1) the mapping between the smartfont char-
acters and Latin (i.e. “English”) characters, 2) a description
of the smartfont’s organization, and 3) examples of words in
the smartfont with their Latin equivalents. The site’s welcome
page provided the tutorial and a chart of the participant’s per-
formance over time for self-tracking. Participants could return
to the welcome page at any time.

The site provided short yes/no practice questions to help partic-
ipants learn their smartfont. The questions were generated via
crowdsourcing, consisting of questions from MindPixel [37]
and questions we gathered from Amazon Mechanical Turk
workers. We screened the questions for inappropriate content.
In total, we used 2739 questions: 1245 with an answer of “yes”
and 1494 with an answer of “no.” The questions were gener-
ally fun and entertaining. Examples include “Is the moon out
at night?” and “Are you a celery?”.

Figure 13: Sample practice question for smartfont Logobet.
(Do fish wear clothing? Yes/No)

Practice questions were displayed with smartfont characters,
as shown in Figure 13. After receiving an answer from the
user, the site showed the question in Latin characters and
gave feedback on correctness. While answering practice ques-
tions, participants could reference a cheatsheet of the mapping



between smartftont and Latin characters. The Polkabet cheat-
sheet also provided mnemonics. To view the cheatsheet, a user
could click a link above the question and the cheatsheet would
overlay the practice question. This design forced participants
to use their memory when answering questions, rather than
relying entirely on the cheatsheet to look up each character.

To further help participants memorize their smartfont, we
made flashcards available throughout the study. Each flash-
card presented a single smartfont character, and quizzed the
participant on its Latin equivalent. Mistaken characters were
repeated until the participant got them right.

Experimental Setup
We recruited 23 people to use our smartfont learning site
through Amazon’s Mechanical Turk platform.10 Each partici-
pant was assigned randomly to a single font: 8 to Polkabet, 6
to Tricolor, and 9 to Logobet. Varying numbers for each font
are due to participant dropout during the study. Participants
chose how long they spent on our site. They typically spent
2-3 hours per day on our site over the course of about a week.
Our study workers received $5 for their first 10 questions,
$0.05 per question for the next 3333, and an extra $50 if they
completed 3333 by the study end date. Workers had at least a
HIT Approval Rate of 97% and 1000 approved HITs.

Participants set up accounts on the learning site so that they
could log back in to continue learning and we could track
their progress. Participants were compensated for the yes/no
practice questions that they answered, but were free to use the
flashcards, cheatsheet, or tutorial at any time. We recorded
time and accuracy in answering the yes/no questions. One in
every 10 yes/no questions was displayed in Latin characters
for baseline comparison. We also recorded their use of the
cheatsheet and flashcards throughout the study. Participants
were free to provide open-ended feedback through a form on
the site at any point during the study.

Learnability Results
We evaluated learning in terms of speed and accuracy in read-
ing and answering the practice questions. To evaluate speed,
we calculated the ratio of the time it took them to answer each
smartfont practice question to the average time it took them to
answer the Latin control questions. A value of 1 means that
it took the same time to answer smartfont questions as Latin
ones, a value of 2 means it took twice as long, and so on.

All participants held over 95% accuracy in answering the
encoded questions, so they were not guessing. Practice did not
increase accuracy. Average accuracies were: Polkabet 97.8%,
Logobet 97.3%, Tricolor 98.2%, Latin 98.9%. The difference
between each smartfont and Latin was statistically significant
(p<0.001, Kruskal-Wallis). Accuracy and response time were
weakly correlated (r=-0.0030, p=0.2534, Pearson).

Figure 14 shows the general trends across our smartfonts.
Tricolor exhibits the easiest learning curve, followed by Lo-
gobet and then Polkabet. After 2,000 questions, participants
learning Tricolor were reading a median of 2.1 times slower
than they did in Latin; participants learning Logobet were
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5.2 times slower; and participants learning Polkabet were 6.7
times slower. We ran an unpaired t-test to determine whether
the differences in response time across fonts was significant
after 2000 questions. We found a statistically significant
difference between each pair of fonts: Polkabet and Logo-
bet (t(8498) = 10.6623, p < 0.0001), Polkabet and Tricolor
(t(7998) = 4.0640, p < 0.0001), and Logobet and Tricolor
(t(8498) = 2.6588, p < 0.008).

Figure 14: Smartfont response time, normalized by individual
average Latin time. Each point is the median of a sliding
window of averages across participants to remove outliers.

There was some variation in learning curves between individ-
ual participants. Two participants learned their smartfonts,
Tricolor and Logobet, extremely quickly. They became as
fast at reading the smartfont as they were at Latin after only
around 1,000 questions. Their quick learning curves show
that while learning smartfonts might be somewhat challenging
for most people, it is quite natural for some. Those with an
affinity for learning smartfonts have a low barrier to start read-
ing and benefiting from smartfonts. The variation in learning
curves between individuals also suggests the benefit of per-
sonalization. Some may prefer to learn smartfonts that would
challenge others, and these preferences may be individual.

Adding color to Tricolor’s characters appeared to support learn-
ing. Since its characters’ shapes are unique and resemble the
Latin alphabet, one might be concerned that people learn to
read it ignoring color. This did not seem to be the case. We
found that participants remembered the colors of common
words, not just the letter shapes. In a post-test three days after
the site closed, seven readers of Tricolor were asked to identify
the coloring of five common words (like “the”) on multiple-
choice questions with four choices (three random colorings of
the same shaped letters). The aggregate accuracy was 28/35
(80%) over these four questions, strongly indicating that they
had remembered at least some of the colors.

Participants used both the flashcard and cheatsheet as they
learned our smartfonts. Participants learning Tricolor made
more use of the learning resources than participants learning
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Polkabet or Logobet. It is possible that participants learning
Tricolor relied more on the learning resources because their
font tutorial did not include additional information beyond
its mapping to Latin characters. We provided mnemonics
for Polkabet, which likely helped Polkabet participants re-
call more characters independently, if slowly. Similarly, we
provided a lengthy tutorial for Logobet detailing the charac-
ter organization, that likely helped participants remember the
character representations. Because of its relative simplicity,
Tricolor had no mnemonics or details about font organization.

We gave participants the opportunity to provide open-ended
feedback. Their responses indicated that they largely enjoyed
learning and reading our fonts. The majority remarked that
their experience was “fun.” Several compared the reading
smartfonts to solving puzzles. One even wrote, “someone
should find a way to turn this into an Android game.” Partici-
pants also noted their progress. One found it, “super hard in
the beginning but on the last couple I actually was reading
them as though I was seeing the letters.” At the end of the
experiment, one participant contacted us, asking if they could
continue using our site to practice their font. Coupled with our
learning curves, the participants’ positive reflections suggest
that people can enjoyably learn to read smartfonts fluently.

DISCUSSION AND FUTURE WORK
There are several limitations to the current work. First, we
did not control for screen type, screen resolution and distance
between the viewer and screen. Moving away from a con-
trolled laboratory setting allowed us to use crowdsourcing for
rapid experimentation. Reproducing our results in a lab with
users with presbyopia would be beneficial. Second, we do not
currently offer users who learn a smartfont the ability to use it
on their devices, which could be crucial to adoption.

We would like to explore benefits of smartfonts beyond im-
proved legibility. Smartfonts can provide privacy by visually
encrypting text. “Substitution ciphers” which encrypt text by
replacing each letter with a symbol, have been used by da Vinci
in mirror-writing, by Union prisoners in the Civil War, and
by children in games and journals. Privacy can be especially
valuable on smartwatches, where embarrassing personal com-
munications may appear without warning, visible to anyone
sufficiently close. Smartfonts might also affect cost or dura-
bility. For instance, the seven-segment digit display common
to digital alarm clocks and other electronics is cheaper and
has fewer pieces that may fail than a high-resolution screen.
Smartfonts could similarly improve printing or hardware costs.

We limited the design space to create each of our smartfonts. A
limited design space makes it difficult to ensure that Latin text
is always unambiguously recoverable from smartfont text, and
that all Latin characters are covered by the smartfont. Possible
solutions include 1) relaxing design space constraints, 2) using
different design spaces for different character sets (e.g. letters
vs. digits vs. punctuation), 3) creating compound characters
and 4) adding indicator characters at the start of different
modes (e.g. text vs. numbers). Braille uses 3) and 4) with a
63-character design space. Color in smartfonts is especially
suited for messaging, where text is typically monocolor, but
raises interesting questions in broader graphic design where

color serves important functions. We plan to further explore
the smartfont design space, including expanding smartfonts to
characters beyond the alphabet.

In the future, smartfonts could be tailored to an individual’s
eyesight or display screen. Each person is unique, and a wide
variety of vision conditions exist. We imagine a system that
evaluates a person’s vision and generates optimized smartfonts
on-the-fly. Such a system would require learning a model of
how vision relates to script readability. Just as many South-
east Asian scripts have rounded letters because straight lines
would tear the palm leaves on which they were written [36],
smartfonts could also be tailored to their display screens.

Smartfonts could also be generalized to other character sys-
tems besides Latin. For example, we can develop smartfonts
for the Hebrew alphabet or Chinese characters. Some East
Asian scripts are read top-to-bottom, so any smartfont in-
volving kerning would need to support combining adjacent
characters vertically. The size of character sets can also vary
enormously. For example, there are over 50,000 Chinese char-
acters. A smartfont for such a large character set would likely
need to take advantage of language or character structure.

CONCLUSION
In this work, we introduced smartfonts, scripts that completely
redesign the written alphabet with the purpose of improving
the reading experience. We do not claim to have created the
best smartfonts or even optimal smartfonts for reading blurry
text, but we have hopefully demonstrated that it is possible to
improve over the millenia-old letters in use today.

We also presented experimental designs for evaluating 1) the
legibility and 2) the learnability of smartfonts under various
reading conditions. We addressed a challenge in the design-
evaluation loop through a novel experimental setup that al-
lowed us to evaluate legibility under various reading conditions
by users without requiring fluency. We evaluated learnability
by teaching smartfonts through an online system that provided
a tutorial, encoded simple yes/no questions, and tracked yes/no
question response times.

Smartfonts have many potential benefits: improved legibility
for various reading conditions, privacy, aesthetics, and intel-
lectual challenge (though easier than learning a new script
together with a new language). Allowing interested users to
opt-in, smartfonts do not require alphabet reform. They do
not require new hardware or software, and are deployable on
existing platforms. As our experiments showed, people can
learn them with a reasonable amount of practice.

As we move into an age of personalized electronics, screen
sizes shrink and enabling people to read comfortably on small
screens becomes increasingly important. Similarly, making
it possible for people to read text that looks blurry is also
important. As people age, their eyes lose the ability to focus,
and glasses are not always convenient or available. Similarly, a
variety of low-vision conditions exist and cannot be corrected
with glasses. Our legibility experiments provide evidence that
our smartfonts are indeed more legible for a range of small
sizes and with varying amounts of blur.
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