
Improving QoS in BitTorrent-like VoD Systems
Yan Yang

Univ. of Southern California
Alix L.H. Chow

Univ. of Southern California
Leana Golubchik

Univ. of Southern California
Danielle Bragg
Harvard University

Abstract—In recent years a number of research efforts have
focused on effective use of P2P-based systems in providing large
scale video streaming services. In particular, live streaming and
Video-on-Demand (VoD) systems have attracted much interest.
While previous efforts mainly focused on the common challenges
faced by both types of applications, there are still a number
of fundamental open questions in designing P2P-based VoD
systems, which is the focus of our effort. Specifically, in this
paper, we consider a BitTorrent (BT)-like P2P VoD system and
focus on the following questions: (1) how the lack of load
balance, which typically exists in a P2P-based VoD system,
affects the system performance and what steps can be taken
to remedy that, and (2) is a FCFS approach to serving requests
at a peer sufficient or whether a Deadline-Aware Scheduling
(DAS) approach can lead to performance improvements. Given
the deadline considerations that exist in VoD systems, we also
investigate approaches to avoid unnecessary requests and queuing
time. For each of these questions, we first illustrate deficiencies
of current approaches in adequately meeting streaming Quality
of Service (QoS) requirements. Motivated by this, we propose
several practical schemes aimed at addressing these questions. To
illustrate the benefits of our approach, we present an extensive
simulation-based performance study of our techniques.

I. INTRODUCTION
In recent years peer-to-peer (P2P) systems have become an

effective approach to video content distribution. In particular,
many P2P live streaming systems, such as PPLive [1] and
CoolStreaming [2], have been deployed and gained wide pop-
ularity. Because of their scalability characteristics, significant
research effort (e.g., [3], [4], [5], [6], to name a few) has been
focused on the design of P2P systems for live streaming. These
and other works provide insight into performance, scalability,
dynamics (and other characteristics) of P2P live streaming
systems (see Section VI for a more detailed overview and
relationship to our work).
More recently, interest has also turned toward another

important and technically challenging application, specifically
Video-on-Demand (VoD) service for high-quality, full-length
movies. Examples of such systems include Joost, Hulu, Net-
flix, iTunes Store, and so on. Naturally, P2P-based designs
have been considered in the context of VoD applications as
well. For instance, the study in [7] shows that the MSN video
server load can be reduced by ≈ 95% through the use of a
P2P-based approach. A P2P-based design of VoD applications
is also the focus of our work.
Before describing our contributions, we first note that there

are a number of fundamental differences between VoD and live
streaming. VoD applications have a greater data diversity than
live streaming applications. In live streaming systems, nodes
typically request data around a particular playback point - that

is, users are watching the stream at around the same time.
In contrast, in VoD systems nodes request videos at different
times, and thus their playback points differ greatly. One
implication of this is that nodes in live streaming applications
only need a playback buffer of several minutes (as peers are
clustered around the same playback point), while nodes in VoD
applications may need to hold the entire movie (as each node
tends to have a different playback point). Another implication
is that playback deadlines of file pieces in VoD have a larger
variance than those in live streaming. This is partly due to
(a) the playback points of nodes being dependent on their
arrival time (which is diverse) and (b) nodes in VoD systems
potentially requesting data relatively far into the future (from
their playback point), as VoD data is pre-recorded (in contrast
to data being generated live).
In this paper, we consider a BitTorrent (BT)-like P2P

design, as BT is one of the more popular P2P systems which
(according to [8]) accounts for an astounding 35% of all the
traffic on the Internet (more than all other P2P applications
combined). BT is also a highly efficient system, e.g., the study
in [9] illustrates that it makes nearly optimal use of peers’
upload bandwidth. Briefly, in BT, nodes join the system (after
receiving “start-up” information from the tracker) and begin
requesting pieces of data from their neighbors. The tracker
maintains a list of nodes which are currently participating
in the corresponding torrent. It is responsible for assisting
in peer discovery and is not involved in any data transfer or
data scheduling. A node, i, which does not have a complete
copy of the file picks a number of peers to whose requests it
will respond with an upload of an appropriate data piece. A
subset of these nodes are picked based on the tit-for-tat (TFT)
mechanism, i.e., those neighbors which have provided the best
service (in terms of download rate) to node i recently. And a
subset is picked randomly, to explore better neighbors. Nodes
which have a complete copy of the file may stay in the system
for some time and continue to upload data to their peers. All
these choices are re-evaluated periodically.
Because of its success, a number of previous efforts, in-

cluding [10], [11], [4], [12], have focused on adapting BT
(originally designed for file downloads) to VoD applications.
To adapt BT for streaming, a number of fundamental issues
need to be addressed. To illustrate the difference between using
BT for file downloads and for VoD streaming, we briefly sum-
marize two such issues, which are studied, e.g., in [10], [11],
[4], [12]. Firstly, the default piece selection strategy used in
BT is not well suited for VoD applications, as BT uses a rarest
first strategy to determine which piece a peer should request

2

0−9 20−29 40−49 60−69 80−89 100
0

5

10

15

20

25

30

35

Download Progress (%)

U
pl

oa
d

P
ro

gr
es

s
(%

)

Random
LLP

Random

LLP

Fig. 1. Upload vs. Download

0 200 400 600 800 1000
0

2

4

6

8

10 x 105

Time (Sec)

#R
eq

ue
st

Fig. 2. Request Deadline Distribution

next. As such a strategy does not consider realtime playback
constraints of video, it is unlikely to lead to good quality of
service (QoS), as shown in [12], [3]. Secondly, BT’s built-in
incentive mechanism, TFT (as described above), is not well
suited for VoD systems due to the asymmetric peer relationship
in VoD applications, i.e., young nodes can download from old
but not vice versa, as shown in [10]. Approaches to address
these and other issues in the context of both live streaming and
VoD systems are discussed in a number of works, including
[7], [13], [14], and [15]. However, several open fundamental
questions still remain, which are particular to P2P-based VoD
systems, and (to the best of our knowledge) previous efforts
either do not address them (at least not for BT-like systems)
or do not propose solutions that lead to real implementations.
We describe two such fundamental issues next, and focus on
exploring practical solutions to the corresponding problems in
the remainder of the paper.
One such question is to which peer should a node send

a request for a data piece, among all neighbors which have
that piece; we will refer to this as the “peer request problem”.
For instance, simply picking such a neighbor at random has
the disadvantage that older peers (nodes which arrived earlier
and have a larger fraction of the content) receive more requests
from many younger peers (nodes which arrived later). Figure 1
depicts percentage of upload performed by a node as a function
of percentage of download completed in a typical P2P VoD
system, obtained by simulation (refer to Section II). Compared
to an “ideal” load balancing scheme (referred to as “LLP” and
explained in Section III), randomly picking the neighbor to
which a request is sent results in unbalanced workload over
the age of a node, as ≈ 50% of uploads occur after 80% of the
download is completed. Consequently, the data request load
is unevenly distributed among the peers, (intuitively) leading
to losses in QoS because: (1) requests sent to overloaded
older peers suffer from long waiting times, and (2) the wasted
bandwidth of young peers reduces the overall system capacity
and further slows down the streaming process. Such a load
balancing problem is briefly discussed in [10], with possible
solutions based on an approach proposed in [16] but in the
context of file downloading rather than VoD streaming (see
Section VI for details). We study the peer request problem in
Section III (where we also compare our approaches to other
approaches, e.g., those suggested in [10], [17], [18]).
Another fundamental question is which request for data in

its queue should a peer serve next, among all the requests for

data made to that peer; we will refer to this as the “service
scheduling problem”. Typically, in a BT-like VoD system, as
in [10], each node can serve up to a certain number of requests
concurrently, with the remaining requests waiting in a queue
until a service slot becomes available. As noted earlier, the
playback deadlines of the requested data pieces in a VoD
system are quite diverse, some having urgent deadlines and
others being more relaxed. This diversity can be observed
in Figure 2, which depicts a request deadline distribution
obtained from simulations (refer to Section II). We can see
that although many requests have a very short deadline, e.g.,
≈ 33% of requests have deadlines within 50 seconds, there
are some requests that have very long deadlines, where the
longest deadline for a request is ≈ 1000 seconds. Intuitively,
a service discipline that would reduce the probability of a data
piece missing its playback deadline should result in better
QoS. In [10], FCFS scheduling is suggested. We study this
scheme in Section IV and show that better solutions (which
take advantage of deadline diversity) are possible.
Another question within the service scheduling context is

whether all requests for data pieces should be served, and
if not, which ones should be rejected. Existing VoD designs,
including [19], [11], [10], [12], accept and serve every request.
A natural question is – if a request will (likely) miss its
deadline, why waste resources by serving it? The disadvan-
tages of not identifying and rejecting such requests are that:
(a) receiving such a request wastes upload resources (as this
request will likely miss its deadline and not be played) and (b)
the request in question might be able to receive timely service
from another (perhaps less loaded) peer. Intuitively, in either
case, it might be best to reject the request in question which
should result in better QoS overall. We study this service
rejection problem in Section IV.
In summary, here we focus on the two questions stated

above. We first motivate these questions through examples.
We then propose practical approaches to address them. We
also show that solely addressing one of these questions is not
sufficient for achieving high QoS, and thus a good P2P VoD
streaming system should consider both. For ease of exposition,
we first present our schemes in a homogeneous environment
(i.e., where nodes have equal upload capacities). We then show
how simply our schemes can be adapted to heterogeneous
environments (refer to Section V).
Thus, the contributions of this work are as follows:
• We explore practical solutions to the “peer request prob-
lem” (described above), that can be easily implemented
through fairly small modifications to the current BT
protocol - these approaches result in better QoS in the
VoD system and at the same time are scalable, efficient,
and easily deployable today (see Section III).

• We propose the use of Deadline-Aware Scheduling (DAS)
which includes an earliest deadline first (EDF) scheduling
approach and an early drop (EDP) based approach to
address the “service scheduling problem”. We show that
DAS results in better QoS in a VoD system. To the best
of our knowledge, this work is the first to explore the use

3

of earliest deadline first and early drop approaches in the
context of BT-like VoD systems (see Section IV).

• We show that addressing the “peer request problem” or
“service scheduling problem” alone is not sufficient to
achieve high QoS, i.e., that an appropriate combination
of good solutions to each question is needed in a P2P VoD
streaming system to provide high QoS with low overhead.
To support this claim, we present an extensive evaluation
study on the use of these approaches under a variety of
environments (see Section IV).

II. PERFORMANCE METRICS AND EXPERIMENTAL SETUP
We explore and evaluate solutions to the above stated ques-

tions through simulations, using the BT simulator provided by
[9] (also used by other groups for BT related research). This
is an event-based simulator, originally developed to simulate
the piece exchange mechanism in the BT protocol. To explore
our proposed approaches for BT-like VoD systems, we modify
the simulator in [9] as follows:

• We remove BT’s default piece exchange mechanism (to
adapt it to VoD streaming), and implement the data piece
request and service mechanisms of Sections III and IV.

• We let each node send up to D requests to peers concur-
rently1; each peer serves U of the the incoming requests,
with the remainder placed in a queue.

• Nodes start their playback after a startup delay, s. After
that, playback proceeds at the rate of r without interrup-
tion. If a piece is not received before its playback time,
it is marked as missing2.

• Each node serves requests until it finishes playback. Once
it finishes the playback, the remaining requests in the
queue are discarded and need to be reissued by the
requesting nodes. This emulates a user quitting the system
in the real world.

• We allow node arrivals; in what follows we use a Poisson
arrival process with rate λ.

• There is one initial server in the system and it stays in
the system for the duration of the simulation. Each node
can request a data piece from this server, if that piece
cannot be found among the peers.

Unless otherwise stated, the results that follow correspond to
simulation settings given in Table I. All experiments simulate
a BT-like VoD system for 30 hours. To isolate effects of
our proposed approaches, we first consider the in-order piece
selection strategy, i.e., nodes requesting pieces according to
their playback order. We then study our proposed approaches
under mixed selection (i.e., nodes requesting some pieces
according to playback order and some based on their rarity) in
Section IV. By default, each node serves its incoming request
queue using FCFS policy.

1Increasing D allows a node to request data pieces further into the future
at the cost of causing longer queues at peers, thereby increasing waiting time;
a detailed exploration of this parameter is outside the scope of this paper.
2A small s result in lower startup delay but also in poorer video quality;

a large s improves continuity but also increases startup delay (and both are
aspects of QoS). A detailed exploration of s is outside the scope of this paper.

TABLE I
SIMULATION SETTINGS

Simulation Time 30 hours
Avg node inter-arrival time (1

λ
) 60 sec

Movie Encoding Rate 500 Kbps
Startup Delay (s) 10 sec

Piece Size 256 KB
File Size 400 MB (1600 pieces)

Peer Set Size 40
Node Max #Upload Connection (U) 5
Node Max #Concurrent Request (D) 10

Node Capacity (Down / Up) 5000 Kbps / 512 Kbps
Server Max #Upload Connection 5

Server Upload Capacity 5000 Kbps

For a fair comparison between approaches, we use the
same node arrival sequence for each simulation with a given
arrival rate. In experiments where nodes randomly select to
which peer to send a request, we also use the same selection
sequence. In what follows, unless otherwise stated, we focus
on the continuity index (CI), defined in [5], as our main metric
for video viewing quality, where:

CI =
#total pieces− #total missing pieces

#total pieces
.

A higher CI implies better video playback quality.

III. PEER REQUEST PROBLEM
We begin with a simple example which illustrates the poor

viewing quality that can occur in an unbalanced system (i.e.,
where requests are not evenly distributed among nodes and
only a subset of the nodes serve most requests). Motivated by
this, we explore approaches to balancing the request load, to
improve playback quality.
Motivating Example: for ease of exposition, we perform an
experiment using a homogeneous set of nodes, where we use
the following peer request policies.
Random (Rand): Each node sends the request to a randomly
chosen neighbor which has the needed data piece. This is a
typical approach used in other works, e.g., [10], and we use
it as a default/baseline case.
Least Loaded Peer (LLP): Each node sends a request to the
neighbor with the shortest queue size, among all those that
have the needed data piece, randomly breaking ties. We use
this as an ideal case, to mimic perfect load balancing.
The resulting CDF of corresponding CIs is depicted in

Figure 3, where we observe that the viewing quality (as
indicated by CI) under LLP is significantly better than that
of Random. Specifically, the average LLP CI is ≈ 0.97 while
it is only ≈ 0.68 for Random. The standard deviation for LLP
and Random is ≈ 0.07 and ≈ 0.12, respectively, which is
also an indication that peers are likely to get more “stable”
QoS under LLP than under Random. This is due to the more
balanced distribution of requests under LLP. Intuitively, in an
unbalanced system, some nodes will have a long incoming
request queue. Requests sent to these nodes will experience
long waiting times, which will increase the probability that (1)
pieces miss their playback deadlines, (2) waiting for service
of delayed pieces prevents timely requesting of other pieces,
and (3) upload bandwidth of lightly loaded nodes is wasted,
thereby reducing the overall system capacity. We sample nodes

4

in our experiments and observe that under LLP, the node queue
size is significantly more stable than under Random and tends
to be smaller (e.g., the queue size of node #900 under LLP
is always below 10 requests while that of node #900 under
Random goes beyond 35 requests).
To understand why the load is unbalanced under Random,

we observe percentage of upload performed as a function of
the percentage of download completed3. The results are given
in Figure 1, where we observe:

• Under Random, most of the uploads occur in the later
stages of the download process, e.g., ≈ 50% of uploads
occur after 80% of download is completed. This is due
to old nodes having more pieces, resulting in a higher
probability of older nodes receiving requests. This also
verifies a point made in [10] that older nodes are often
overloaded.

• Under LLP, the uploads are more evenly distributed dur-
ing the downloading process, e.g., ≈ 10% of the uploads
occur between 20% and 30% of download completion (in
contrast to only ≈ 3% in the Random case). This is due
to nodes always sending requests to a neighbor with the
shortest queue (under LLP) which helps spread the load
among peers more evenly.

Motivated by this, we now focus on load balancing tech-
niques. Conceptually, LLP would be a simple approach to load
balancing; however, it is difficult to implement, as it requires
exact knowledge of instantaneous node queue lengths. We
could approximate it, by obtaining information about peers’
queue sizes; however, that results in a tradeoff between mes-
sage overhead (for updating such information) and resulting
system performance. We explore this tradeoff in detail below.
But, first, we experiment with a straightforward approach,
which approximates LLP without the need for updates, to un-
derstand whether high QoS can be achieved without overhead.
Specifically, we use:
Least Requested Peer (LRP): For each neighbor, each node
counts how many requests it has sent to that peer and picks
the one with the smallest count, randomly breaking ties.
As noted in the above example, it is the older nodes that

tend to get overloaded. An approach to load balancing, based
on the notion of peer age but in the context of file downloads
rather than streaming, is proposed in [16] using “stratifica-
tion”. Conceptually, stratification attempts load balancing by
insuring that peers of age t only download from peers of age
t + ∆. Adapting the notion of stratification to VoD systems is
suggested in [10]4, and a similar idea to stratification is also
proposed in [17], using tracker support. (Details of how [17]
and [10] differ from our work can be found in Section VI.)

3Note that, with 100% of download completed, upload continues if a node
has not completed the video playback.
4In [10], the suggestion of using stratification-type approaches is only

made at a high level, without evaluation or sufficient scheme details for
implementation. We tried experimenting with their suggested schemes, using
reasonably straightforward implementation, and their performance was not as
good as the schemes explored here. Due to lack of space, we do not present
detailed results here.

TABLE II
DIFFERENT LOAD BALANCING SCHEMES

Rand YNP CNP LRP Tracker LLP
Average CI 0.678 0.785 0.786 0.716 0.785 0.966
Std. Deviation 0.104 0.155 0.157 0.143 0.097 0.066
CI Improvement (%) - 15.82 15.91 5.59 15.77 42.56

For comparison purposes, we include an approach similar to
that in [17] in our experiments below which can be described
as follows.
Tracker Assistant (Tracker): The tracker sorts peers accord-
ing to their arrival times. Whenever a node requests the list of
available nodes from the tracker (e.g., upon arrival or when
lacking peers due to peer departures), it will receive a list of
nodes which have the closest arrival times to its own.
To explore the notion of load balancing by not overloading

older peers, we also propose the following schemes.
Youngest-N Peers (YNP): Each node sorts its neighbors
according to their age, where a peer’s age can be determined
from its join time (available at the tracker). YNP then ran-
domly picks a peer among the N > 1 youngest peers which
have the piece of interest and requests that piece from that
neighbor. This approach tries to send requests to younger
peers as they are less likely to be overloaded. We choose
randomly among a subset of youngest peers, rather than the
youngest one, as choosing the youngest one may lead to many
nodes sending their requests to the same youngest peer (thus
potentially overloading it).
Closest-N Peers (CNP): This approach more closely emulates
the stratification behavior described above. It is similar to YNP
but instead sorts the neighbors based on how close they are
to a node’s own age, and then randomly picks from the N
closest age peers that have the needed piece.
Table II reports the average CI, standard deviation (STD),

and the improvement in the average CI as compared to
Random for all the approaches discussed above. Figure 4
depicts the average CI as a function of N for YNP (the results
for CNP are very similar to YNP and are thus omitted). We
make the following observations:

• YNP and CNP give significant performance improve-
ments as compared to Random, for good choices of
N . Similar performance is also achieved by Tracker.
(Although Tracker does not require picking a good N ,
it performs worse than YNP and CNP when we apply
our scheduling improvements in Section IV.)

• YNP (and CNP) can be quite sensitive to the choice of
N as seen in Figure 4. If N is too small, YNP and CNP
risk overloading a few peers, but with very large values
of N (approaching a node’s neighbor set size), YNP and
CNP degenerate to Random (as also observed in our
experiments). In our later experiments, we fix N = 15
when we use YNP/CNP. We reduce the sensitivity to
choice of N through approaches presented in Section IV.

• LRP does not perform as well as the other schemes,
which indicates that this straightforward approach to ap-
proximating LLP is not sufficient. Adding randomization
(as in YNP and CNP) might help but is outside the scope
of this paper.

5

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x: CI

F(
x)

Random
LLP

Random

LLP

Fig. 3. CI (Random, LLP)

0 10 20 30 40
0.4

0.5

0.6

0.7

0.8

0.9

1

N

C
I

YNP
YNP+DAS

YNP+DAS

YNP

Fig. 4. Different N

0 20 40 60 80 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Update Interval (Sec)

C
I

LLP−S
LLP−P
LLP−P+DAS

LLP−P+DAS

LLP−S

LLP−P

Fig. 5. CI (LLP-S, LLP-P)

0 20 40 60 80 100
10−1

100

101

102

103

Update Interval (Sec)

#M
es

sa
ge

/D
at

a
P

ie
ce

LLP−S
LLP−P
LLP−P+DAS

LLP−P+DAS

LLP−P

LLP−S

Fig. 6. LLP Update Overhead

• LLP gives the best performance among all schemes.
However, since it is difficult to implement in practice
(as noted above), we next consider its implementable
approximations that perform better than LRP (but at the
cost of update overhead).

LLP with Stale Information (LLP-S): One possible imple-
mentation of LLP is to let each node report its queue length to
its neighbors periodically, which we term LLP-S5. Not surpris-
ingly6 this results in a tradeoff between information freshness
and update overhead. Figure 5 shows LLP-S performance and
Figure 6 shows the corresponding message overhead, per data
piece, plotted on a log scale. With a small update interval
(e.g., 5 seconds), LLP-S performs well but at the cost of
high message overhead (e.g., ≈ 38 messages per data piece in
the case of a 5 second update interval). Under longer update
intervals, LLP-S’s performance drops quickly, e.g., it performs
similarly to Random when the update interval is increased to
90 seconds (with a corresponding message overhead of ≈ 3
messages per data piece).
LLP Piggyback (LLP-P): because of a relatively high over-
head of using LLP-S (even with larger update intervals), we
propose LLP Piggyback (LLP-P) which is suitable for BT-like
VoD system. In a BT-like system, when a node receives a data
piece, it sends out a Have message to all its neighbors. We
piggyback our LLP update messages on these Have messages,
thus reducing the additional message overhead. Since it is
possible that no Have message is sent out by a node for a
long period of time (e.g., a node experiencing slow download
or one that downloaded all pieces), we still include explicit
update messages in LLP-P, when no update message has been
sent (either explicitly or through piggybacking) for Tl time
units. Due to lack of space, we give a formal description of
LLP-P in [20].
Figures 5 and 6 depict LLP-P’s performance and corre-

sponding message overhead, respectively, where we observe:
• With piggybacking, the update message overhead is sig-
nificantly reduced, e.g., message overhead corresponding
to a 30 second update interval is only ≈ 0.6, as compared
to ≈ 7.6 without piggybacking.

• With piggybacking, the average CI is less sensitive to the
update interval - it only drops ≈ 4% when going from

5Studying malicious behavior in queue length reporting is outside the scope
of this paper.
6This is also noted in, e.g., [18], with differences between [18] and our

work explained in Section VI.

a 5 second to a 90 second interval. This indicates that
we can use a larger update interval without significant
performance degradation, which is due to the already
frequent updates achieved through piggybacking on Have
messages (these were measured to be sent out, on the
average, every ≈ 4 seconds in the simulation).

Rather than relying solely on the “Have” messages, one could
also piggyback updates on other messages, e.g., piece requests,
streaming data, etc. We expect this can further reduce the
overhead while improving CI.
Although, as demonstrated in this section, a good load

balancing scheme is important, significant room for CI im-
provement remains. Next, we study how service scheduling
affects system performance and propose approaches to further
improve CI.

IV. SERVICE SCHEDULING PROBLEM
In [10], the authors show, using their model, how to bound

delay in a BT-like VoD system, under the FCFS queuing
policy, which is related to the second question we posed in
Section I, i.e., what service scheduling policies are better
suited for VoD systems and perhaps under what environments.
It includes two sub-problems: (i) in what order should requests
be served and (ii) whether some requests should be rejected. To
address these, we propose Deadline-Aware Scheduling (DAS)
which considers the requests’ deadline constraints.
As argued in Section I, the requested pieces’ deadlines (in

a VoD system) are quite diverse (refer to Figure 2). Hence, a
node’s request queue contains a mix of requests, those with
urgent deadlines and those with less urgent ones. In such
situations a FCFS policy may not work well as illustrated by
the following example.
Peer Service Example: we are given two requests A and B
which arrive in order (see Figure 7), where each request takes
1 time unit to serve. A’s deadline expires in t+2 time units and
B’s deadline in t+1 time units. Using FCFS, A is served first
and B is served 1 time unit later. Unfortunately, then B misses
its deadline as by the time A’s service completes, B’s deadline
passes. However, if the service policy is deadline aware, B
could receive service before A, and A would still make its
deadline. As a result, both A and B make their deadlines.
Earliest Deadline First (EDF): the above simple example
illustrates the benefits of a deadline-aware policy. Motivated by
this, we use earliest deadline first (EDF) policy. Under EDF,
each node maintains a queue sorted by the request deadline

6

A:t+2

B:t+1

B:t+1

B: t+1
time

t+1 t+2

FCFS Deadline
Aware

A made
the deadline

A: t+2t
B miss

the deadline

B:t+1

A:t+2

A:t+2

A: t+2
time

t+1 t+2
B made

the deadline

B: t+1t
A made

the deadline

Piece
Request

Serving
Request

Fig. 7. Piece Service Example

Case (i)

Piece
Request

Serving
Request

A:t+2

B:t+1

B:t+1

B: t+1
time

t+1 t+2
A made

the deadline

A: t+2t
B miss

the deadline

D:t+1 F:t+2

F:t+2
timet+1 t+2

D made
the deadline

D: t+1t
F made

the deadline

E:t+2.5

F:t+2

E:t+2.5

t+3E:t+2.5

E miss
the deadline

E:t+2.5

Case (ii)

Fig. 8. Service Rejection Example

and picks the request with the most urgent deadline to serve
first. In our experiments, each node stamps a request with
information of the remaining time until playback point for that
piece7. Upon receipt of the request, the serving peer extracts
this information and uses it as the request deadline.
Service Rejection Example: we return to the above example
and extend it with two additional cases illustrated in Figure 8.
In Case (i), we have another request, C, which has a deadline
in t + 2.5 and arrives after B is served. Since it is less urgent
than A, according to EDF, C will be served after A, which
would be at t + 3, resulting in C missing its deadline. In this
case, we should not serve C so that it can try other peers.
In Case (ii), at time t, there are two requests, D and E, in
the queue, with respective deadlines of t + 1 and t + 2.5.
Then, request F arrives, and its deadline is t + 2. Since D
is the most urgent one, according to EDF, it will be served
first, after which (at time t + 1), F will be served, since it is
more urgent than E. After F is served, which is at time t+2,
we find that there is no way for E to make its deadline (as
its service takes unit time). In this situation, we should have
accepted service of F but dropped E, as E is less urgent and
thus has more time to look for service from other peers.
Early Drop (EDP): The question before us now is how to
avoid wasting a request’s time, waiting time in the queue, if
(given the current load on that peer) it cannot be served on
time. In particular, (1) if a request cannot be served on time,
inserting it into the queue wastes resources/time that can be
used by other requests, and (2) inserting a new request into the
queue may change the waiting time of existing requests (when
EDF is used), suggesting that we should re-evaluate existing
requests to see if they can still be served on time.
To address these issues, we propose the Early Drop (EDP)

policy which works as follows. We first estimate the waiting
time of a newly arrived request, using currently available
bandwidth and the request load already in the queue that can
affect the newly arrived request (i.e., this is based on the
request’s deadline and the service policy used, e.g., FCFS vs.
EDF). If it is determined that the newly arrived request can
make its deadline, it is inserted into the queue (according to the
service policy). At that point, we estimate (in a similar manner)
the waiting time of all requests that were already in the queue
before the new arrival and ended up being queued behind the

7Malicious nodes can attempt to forge deadlines, thus making their requests
more urgent. Studying of malicious behaviors and corresponding prevention
schemes is part of future efforts. We note that a simple detection can reduce
the effectiveness of such exploits, e.g., a node can estimate deadlines for
peers’ requests based on their request history or join time.

TABLE III
DIFFERENT LOAD BALANCING SCHEMES WITH DAS

Rand YNP LRP Tracker LLP-P LLP
Average CI 0.929 0.982 0.887 0.975 0.996 0.998
Std. Deviation 0.104 0.155 0.143 0.097 0.005 0.066
CI Improvement (%) 37.02 25.10 23.88 24.20 5.29 3.31
Msg. Overhead 1.959 0.549 6.904 1.830 0.430 0.053

new arrival (i.e., after it was inserted into the queue). If some
of these requests will now miss their deadlines, these requests
are dropped from the queue, and the peers that made the
original requests can try to obtain the corresponding pieces
from other peers. Thus, our approach tries to drop requests
from the queue as early as possible, i.e., as soon as it is
determined that they will miss their deadline. We give a more
formal description of EDP in [20].
Deadline-Aware Scheduling (DAS): Given our deadline con-
siderations, it is (intuitively) useful to combine EDF and EDP,
and we term the combined scheme Deadline-Aware Scheduling
(DAS). Here, we study the effect of DAS under different load
balancing schemes discussed in Section III8. In Table III we
report the average CI, standard deviation, and the improvement
in the average CI as compared to the case without DAS. We
set N = 15 in YNP; LLP-P’s update threshold is set to
40 second (based on our earlier experiments). We omit CNP
results as they are quite similar to those of YNP. We observe
the following:

• All load balancing schemes show significant improve-
ment with DAS applied. When DAS is used in LLP or
LLP-P, we can achieve CI of nearly 1, which indicates
the importance of including DAS, even when good load
balancing schemes are used.

• Figure 4 depicts the average CI of YNP as a function
of N . We found that YNP is less sensitive to N when
DAS is used, which is a highly desirable property. The
reason is that, even if peers decide to send requests to
a small subset of neighbors, under DAS, these requests
still have a high chance of either being served before their
deadlines or being reissued to a “better” peer. Even as N
grows large, we no longer see the big drop in CI that
occurs when DAS is not used. This makes this policy
more practical to implement than YNP alone (e.g., we
can safely use reasonably small values of N).

• Figure 5 depicts the average CI of LLP-P as a function of
the update interval threshold. We found that LLP-P with
DAS is less sensitive to the update interval threshold and
can achieve a CI close to 1 even with a large interval. The

8The performance of EDF or EDP acting alone can be found in [20].

7

0 20 40 60 80
0

100

200

Update Interval (Sec)

0 20 40 60 80
0

0.1

0.2

DAS OverheadTotal Overhead

DAS Overhead

Total Overhead

Fig. 9. Overhead (LLP-P+DAS)

0 20 40 60 80 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Peer Set Size

C
I

LLP−P
YNP+DAS

YNP+DAS

LLP−P

Fig. 10. Peet Set Size (CI)

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

Peer Set Size

O
ve

rh
ea

d

LLP−P
YNP+DAS

YNP+DAS

LLP−P

Fig. 11. Peer Set Size (Overhead)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x: CI

F(
x)

Random+DAS(0.1, Naive)

Random(0.1)

Random+DAS(0.1)

Random+DAS(0)

Fig. 12. CI (Mixed Selection)

update message overhead of LLP-P with DAS is similar
to LLP-P without DAS as shown in Figure 6.

DAS Overhead: use of EDP introduces additional message
overhead, i.e., piece requests have to be reissued, when re-
quests are dropped by a peer. Such request dropping may cause
a chain effect in request reissuing, as a reissued request may
cause additional drops when it arrives at another peer, etc.
To evaluate the overhead due to DAS, in our experiments,
we measure the number of requests sent per data piece under
different load balancing schemes and report9 them in Table III,
where we observe:

• In general, the better load balanced is the scheme, the
lower is the DAS overhead, since a more balanced scheme
can “direct” the requests to “better” peers which cuts
down on reissueing of requests.

• Under LLP-P, increasing the update interval threshold
increases the DAS overhead as shown in Figure 9, which
is due to the reduced effectiveness of LLP-P under larger
update intervals. However, the total message overhead
of LLP-P is still dominated by LLP update messages.
Thus, the total message overhead increases when we use
a smaller update threshold as depicted in Figure 9. Our
measurements indicate that the total message overhead of
LLP-P with DAS is similar to that without DAS.

Is LLP-P Always Preferred?: above LLP-P shows good
performance under small message overhead; thus, a natural
question is whether LLP-P should be the scheme of choice. In
BT, each node has a list of neighboring peers and the overhead
of LLP-P depends on (1) how often it sends explicit update
messages, and (2) to how many neighbors it needs to send
these messages (i.e., its peer set size). To study how peer set
size affects LLP-P overhead, we vary each node’s peer set
size from 10 to 100 and compare LLP-P to YNP. Figure 10
depicts the resulting average CI, and Figure 11 shows the
corresponding message overhead, where we observe:

• With a larger peer set size, the average CI of both LLP-
P and YNP is improved, as a larger number of peers
increases piece availability among neighbors which helps
load balancing schemes.

• With a larger peer set size, message overhead of LLP-
P increases. This is due to LLP update messages being
sent to more peers. By contrast, message overhead of

9For LLP-P, we show the total message overhead which includes both, LLP
update messages and DAS request reissue messages.

YNP reduces because better load balancing through larger
peer size helps reduce reissuing of requests. Therefore,
under larger peer set sizes, YNP can outperform LLP-P in
terms of message overhead while both YNP and LLP-P
can achieve similar CI.

Mixed Piece Selection: for ease of exposition, above we
evaluated our approaches using in-order piece selection for
determining which data piece to request. Mixed piece selection
is studied in the literature, e.g., [12], [3], [11], where most
techniques can be summarized as a combination of rarest-first
selection (mainly for piece diversity) when deadlines are not
urgent and in-order selection (mainly for making deadlines)
when they become urgent. It has been shown that mixed piece
selection improves performance, when done properly. Thus,
we also evaluated our load balancing approaches under mixed
piece selection; since the results were qualitatively similar to
those presented earlier, we omit them here. Instead, we focus
on combing mixed piece selection with our DAS approaches.
Under EDP, a node keeps searching for a peer to serve a

request, and eventually obtains the piece on-time, unless no
peer has that piece or those peers who do, are too overloaded
to make the deadline. Using a mixed strategy can help reduce
the probability of not being able to obtain a piece on-time.
However, a naive implementation of mixed selection under
DAS does not work well. Specifically, the rarest-first selection
part of mixed piece selection conflicts with EDF, as rarest-first
selection typically requests pieces far away from the current
playback point that have more slack time than the normal in-
order request. Consequently, such requests end up at the back
of the queue and end up waiting a long time to be served.
To make DAS work well with mixed piece selection, we

use two request queues (per node), one for in-order requests
and one for rarest-first requests. In-order requests are served
using EDF, and rarest-first requests are served using FCFS10.
When a service slot becomes available, we consider the first
request in the rarest-first queue - if serving that request does
not result in a missed deadline for a request in the in-order
queue, then we go ahead and serve it; otherwise, we pick a
request from the in-order queue (using EDF). We give the
details of adapting DAS for mixed piece selection in [20].
Let p be the probability of selecting a rarest piece and

1 − p be the probability of doing in-order selection, in the

10This is done to respect the motivation of requesting pieces that are rare
at request time. For the same reason we limit the rarest-first queue.

8

TABLE IV
MESSAGE OVERHEAD UNDER DAS AND MIXED PIECE SELECTION

Rand YNP LRP Tracker LLP-P
Msg. Overhead 3.669 0.837 7.125 3.600 0.758
Overhead Inc. (%) 87.29 52.46 3.20 96.72 76.28

mixed strategy. To evaluate our approach, we perform the
following experiments: (1) Random using mixed selection with
p = 0.111; (2) Random using mixed selection with DAS, and
p = 0.1 using naive (one queue per node) implementation; (3)
Random using in-order selection with DAS; (4) Random using
mixed selection with DAS, with p = 0.1 and the two-queues
per node adaptation described above. Figure 12 depicts the
corresponding results, where we observe:

• Without the separate request queues, the performance of
DAS is quite poor under mixed piece selection - the
average CI is only ≈ 0.33 as compared to ≈ 0.68 without
DAS. In contrast, the proposed two-queues per node
adaptation gives significant improvements - the average
CI is ≈ 0.99 as compared to ≈ 0.68 without DAS.

• DAS performs better under mixed selection than under in-
order selection; the average CI is ≈ 0.99 as compared to
≈ 0.93, which is due to better piece diversity under mixed
selection, with later pieces having higher availability
under mixed selection than under in-order piece selection.

We experimented with other load balancing schemes using
DAS with mixed selection. All schemes showed significant
improvements, with the average CI of LRP being ≈ 0.97
and that of other schemes being ≈ 0.99. Thus, even schemes
with relatively poor performance before, such as Random and
LRP, using mixed selection with DAS can achieve a CI similar
to more load balanced schemes. However, this comes at the
cost of higher message overhead (when compared to using in-
order selection) as depicted in Table IV. Under mixed piece
selection, part of the system resources are shifted to serving
rare pieces, which reduces the service rate of the in-order
pieces and increases the corresponding queue length at nodes.
This, in turn, increases the chance of a request reissue.

V. HETEROGENEOUS ENVIRONMENT

So far, we focused on a homogeneous environment, which
enabled a simpler exposition and clearer evaluation of our
schemes. However, nodes in the real world have different
capabilities (e.g., upload capacity). The different upload ca-
pacities affect load balancing characteristics, e.g., faster nodes
can finish servicing requests in their queues before the slower
nodes. Thus, the load balancing schemes need to be adjusted,
to account for the heterogeneity in node capacities. We show
how to adjust the LLP and YNP schemes; other load balancing
schemes can be modified similarly12.
LLP-HLB: LLP related schemes consider nodes’ queue length
as a way to balance load and thus reduce response times. In a

11We pick p = 0.1 as it is a typical value evaluated in the literature.
Exploring other values of p or other mixed selection schemes, e.g., as in
[12], is outside the scope of this paper
12Studying how to provide upload incentives in a heterogeneous environ-

ment is outside the scope of this paper.

0 50 100 150 200 250 300
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Slow Node Upload Bandwidth (Kbps)

C
I

LLP
LLP−HLB

LLP−HLB

LLP

Fig. 13. LLP (Heterogeneous)

0 50 100 150 200 250 300
0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

Slow Node Upload Bandwidth (Kbps)

C
I

YNP
YNP−HLB

YNP−HLB

YNP

Fig. 14. YNP (Heterogeneous)

TABLE V
HETEROGENEOUS SETTINGS

Slow Node Upload BW (Kbps) 32 64 128 256
Fast Node Upload BW (Kbps) 992 960 896 768

heterogeneous environment, the response times of nodes also
depend on their upload bandwidth. Thus, a natural way to
adapt LLP is to consider the amount of time it would take to
respond to all requests at a node (rather than just its queue
length), which is proportional to node queue length

upload bandwidth ; we term this
scheme LLP-HLB.
We evaluate LLP-HLB under a variety of heterogeneous

settings given in Table V, with arrival probabilities of fast and
slow nodes being the same (hence the average system capacity
remains roughly the same across the settings). Figure 13
shows the average CI comparison between LLP and LLP-HLB,
where CI drops when nodes have a larger disparity in upload
bandwidth and LLP-HLB shows improvements over LLP.
However, these improvements are not large, which indicates
that LLP adapts to heterogeneous environments fairly well;
this is due to fast nodes clearing their request queues faster
(i.e., having a shorter queue), which results in more requests
being directed to them. We also observed similar results for
LLP-S and LLP-P, with details found in [20].
YNP-HLB: in the case of YNP, instead of randomly choosing
among N youngest peers, we adapt it to make this choice
based on weighted probabilities, where the weights are pro-
portional to the corresponding nodes’ upload capacities. We
term this YNP-HLB. Figure 14 demonstrates the improved
performance of YNP-HLB over YNP in various heterogeneous
settings. As expected, the HLB adaptation has a significantly
greater affect on YNP, as YNP has no information about loads
at different peers, and hence does not naturally account for
heterogeneity like LLP.
Since our HLB schemes depend on knowledge of neighbors’

upload capacities, the above experiments assume the nodes
have perfect knowledge of peers’ upload bandwidth. In a
real systems, errors can occur in bandwidth estimation. We
examined the sensitivity of our schemes by introducing 20%
and 40% errors in peer’s bandwidth information. In both cases,
we found that the impact on the system performance was
negligible (refer to [20]).

VI. RELATED WORK

Design of VoD systems has received attention from systems,
networking, and signal processing communities for a number

9

of years. Early efforts mainly used traditional client-server
architectures and focused on how to efficiently disseminate
video content from the server to clients; this includes efforts
such as patching [21], periodic broadcastings [22], stream
merging [23], and so on. Recently, much of the research focus
in this area shifted to P2P-based designs, e.g., [7], [19], [15],
[14]. In [7] authors conduct measurements and a simulation
study, using data traces from the MSN video service, and
show that a P2P based approach can greatly reduce server
cost. In [19] authors discuss challenges and design issues of
PPLive, a popular P2P streaming system, with millions of real
world users, and [15] studies a P2P VoD system consisting of
set-top boxes in a homogeneous DSL network. The work in
[14] proposes a tree based P2P VoD system which organizes
nodes by arrival time and tries to combine advantages of tree-
based and mesh-based overlays. While these works provide
interesting insight into P2P-based VoD design, to the best of
our knowledge, only a few of them consider the fundamental
questions posed in this paper, which we discuss below.
Parvez et al. in [10] briefly suggest use of stratification in

VoD systems, proposed in [16] in the context of downloads,
which they suggest to achive by: (1) sending multiple copies of
the same request to several peers so that eventually all requests
are served by a subset of faster peers, (2) sending requests
to the peers with faster response time, based on historical
information so that after some time a node only sends requests
to a subset of peers which provide fast response, and (3) having
nodes maintain a limited buffer around the playback point
(rather than the entire video content downloaded thus far) so
that nodes only serve a subset of peers which have “nearby”
playback points. These are not evaluated in [10], and as noted
above, our evaluation of some of these schemes did not lead
to as good performance as those studied here.
Authors in [18] propose a DHT-based design to balance

request load. They use a scoring function, to select the peer
with the lowest cost to serve a request, which takes into consid-
eration a peer’s information such as bandwidth, current load,
and online time. At a high level, this is similar to our LLP-
based schemes; however, there is not sufficient information
provided (e.g., about how to weigh the different parameters of
the scoring function), for us to be able to make quantitative
comparisons to this approach. Also, they only focus on the
level of load balancing as their performance metric, while
we focus on the resulting QoS. Moreover, as we showed in
Section IV, a good load balancing scheme is not sufficient
for high QoS; hence, our proposed DAS improvement. Liang
et al. in [17] use tracker assistance to improve performance.
We evaluated this scheme in Section III and showed that
our proposed schemes have better performance with lower
overhead.
The piece selection problem in BT-like systems is studied,

e.g., in [11], [4], [12], [3]. While piece selection is not the
focus of our work, we evaluated how our proposed approaches
are affected by the different piece selection strategies.
Another category of works related to ours is those focused

on P2P live streaming, e.g., [2]. Although theoretical analy-

sis and measurement studies of P2P live streaming systems
provide insight into the design of VoD systems as well, as
noted in Section I, there are fundamental differences between
these applications, which give rise to some of the fundamental
questions studied here.

VII. CONCLUSIONS
We posed and studied two fundamental questions in the con-

text of BT-like VoD systems and proposed practical approaches
to addressing these questions. Our extensive simulation-based
study showed that our approaches can provide significant
improvements in QoS in BT-like VoD system.

REFERENCES
[1] PPLive. http://www.pplive.com.
[2] S. Xie, B. Li, G. Y. Keung, and X. Zhang, “Coolstreaming: Design, the-

ory, and practice,” IEEE Trans. on Multimedia, vol. 9, no. 8, December
2007.

[3] Y. Zhou, D. M. Chiu, and J. C. S. Lui, “A simple model for analyzing
p2p streaming protocols,” in ICNP, 2007.

[4] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “Bitos: Enhancing bit-
torrent for supporting streaming applications,” in INFOCOM Workshop,
2006.

[5] X. Zhang, J. Liu, B. Li, and T. S. P. Yum, “Coolstreaming/donet:
A data-driven overlay network for efficient live media streaming,” in
INFOCOM, 2005.

[6] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A com-
parative study of live p2p streaming approaches,” in INFOCOM, 2007.

[7] C. Huang, J. Li, and K. Ross, “Can internet video-on-demand be
profitable,” in SIGCOMM, 2007.

[8] Peer-to-peer in 2005. CacheLogic.
[9] A. Bharambe, C. Herley, and V. Padmanabhan, “Analyzing and improv-

ing bittorrent performance,” in INFOCOM, 2006.
[10] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson, “Analysis

of bittorrent-like protocols for on-demand stored media streaming,” in
SIGMETRICS, 2008.

[11] Y. R. Choe, D. L. Schuff, J. M. Dyaberi, and V. S. Pai, “Improving vod
server efficiency with bittorrent,” in Multimedia, 2007.

[12] K. W. Hwang, V. Misra, and D. Rubenstein, “Stored media streaming
in bittorrent-like p2p networks,” Tech Report, Columbia University, NY,
no. cucs-024-08, 2008.

[13] M. H. Hefeeda, B. K. Bhargava, and D. K. Y. Yau, “A hybrid architec-
ture for cost-effective on-demand media streaming,” Elsevier Computer
Networks, vol. 44, 2004.

[14] M. Zhou and J. Liu, “Tree-assisted gossiping for overlay video distri-
bution,” ACM Multimedia Tools and Applications, vol. 29, no. 3, 2006.

[15] K. Suh, C. Diot, J. Kurose, L. Massoulie, C. Neumann, D. Towsley,
and M. Varvello, “Push-to-peer video-on-demand system: design and
evaluation,” IEEE JSAC, vol. 25, no. 9, 2007.

[16] A. Gai, F. Mathieu, F. D. Montgolfier, and J. Reynier, “Stratification in
p2p networks: Application to bittorrent,” in ICDCS, 2007.

[17] C. Liang, Z. Fu, Y. Liu, and C. W. Wu, “ipass: Incentivized peer-assisted
system for asynchronous streaming,” in INFOCOM Mini Conf., 2009.

[18] K. Graffi, S. Kaune, K. Pussep, A. Kovacevic, and R. Steinmetz,
“Load balancing for multimedia streaming in heterogeneous peer-to-peer
systems,” in NOSSDAV, 2008.

[19] Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang,
“Challenges, design and analysis of a large-scale p2p-vod system,” in
SIGCOMM, 2008.

[20] Y. Yang, A. Chow, L. Golubchik, and D. Bragg, “Improving QoS in
bittorrent-like vod systems,” http://vista.usc.edu/pub/vod-tech.pdf, Tech.
Rep.

[21] L. Gao, D. Towsley, and J. Kurose, “Efficient schemes for broadcasting
popular videos,” in NOSSDAV, 1998.

[22] A. Hu, “Video-on-demand broadcasting protocols: a comprehensive
study,” in INFOCOM, 2001.

[23] D. Eager, M. Vernon, and J. Zahorjan, “Bandwidth skimming: a tech-
nique for cost-effective video-on-demand,” in MMCN, 2000.

